I am going to post here all newly submitted articles on the arXiv related to superconducting circuits. If your article has been accidentally forgotten, feel free to contact me
13
Feb
2023
A superconducting quantum memory with tens of milliseconds coherence time
Storing quantum information for an extended period of time is essential for running quantum algorithms with low errors. Currently, superconducting quantum memories have coherence times
of a few milliseconds, and surpassing this performance has remained an outstanding challenge. In this work, we report a qubit encoded in a novel superconducting cavity with a coherence time of 34 ms, an improvement of over an order of magnitude compared to previous demonstrations. We use this long-lived quantum memory to store a Schrödinger cat state with a record size of 1024 photons, indicating the cavity’s potential for bosonic quantum error correction.
09
Feb
2023
Demonstration of deterministic SWAP gate between superconducting and frequency-encoded microwave-photon qubits
The number of superconducting qubits contained in a single quantum processor is increasing steadily. However, to realize a truly useful quantum computer, it is inevitable to increase
the number of qubits much further by distributing quantum information among distant processors using flying qubits. Here, we demonstrate a key element towards this goal, namely, a SWAP gate between the superconducting-atom and microwave-photon qubits. The working principle of this gate is the single-photon Raman interaction, which results from strong interference in one-dimensional optical systems and enables a high gate fidelity insensitively to the pulse shape of the photon qubit, by simply bouncing the photon qubit at a cavity attached to the atom qubit. We confirm the bidirectional quantum state transfer between the atom and photon qubits. The averaged fidelity of the photon-to-atom (atom-to-photon) state transfer reaches 0.829 (0.801), limited mainly by the energy relaxation time of the atom qubit. The present atom-photon gate, equipped with an in situ tunability of the gate type, would enable various applications in distributed quantum computation using superconducting qubits and microwave photons.
Characterising Polariton States in Non-Dispersive Regime of Circuit Quantum Electrodynamics
A superconducting qubit coupled to a read-out resonator is currently the building block of multiple quantum computing as well as quantum optics experiments. A typical qubit-resonator
system is coupled in the dispersive regime, where the detuning between qubit and resonator is much greater than the coupling between them. In this work, we fabricated and measured a superconducting transmon-resonator system in the non-dispersive regime. The dressed states formed by the mixing of the bare qubit and resonator states can be further mixed by applying a drive on the qubit, leading to the formation of polariton states. We report experimental studies of transitions between polariton states at varying driving powers and frequencies and show how the non-dispersive coupling of the higher levels of the qubit-resonator system modifies the polariton eigenstates and the corresponding transition frequencies. We also report close agreement with numerical results obtained from a driven Jaynes-Cummings Model beyond the dispersive regime.
08
Feb
2023
Simulation of Kitaev model using one-dimensional chain of superconducting qubits and environmental effect on topological states
Kitaev fermionic chain is one of the important physical models for studying topological physics and quantum computing. We here propose an approach to simulate the one-dimensional Kitaev
model by a chain of superconducting qubit circuits. Furthermore, we study the environmental effect on topological quantum states of the Kitaev model. Besides the independent environment surrounding each qubit, we also consider the common environment shared by two nearest neighboring qubits. Such common environment can result in an effective non-Hermitian dissipative coupling between two qubits. Through theoretical analysis and numerical calculations, we show that the common environment can significantly change properties of topological states in contrast to the independent environment. In addition, we also find that dissipative couplings at the edges of the chain can be used to more easily tune the topological properties of the system than those at other positions. Our study may open a new way to explore topological quantum phase transition and various environmental effects on topological physics using superconducting qubit circuits.
Gatemon qubit based on a thin InAs-Al hybrid nanowire
We study a gate-tunable superconducting qubit (gatemon) based on a thin InAs-Al hybrid nanowire. Using a gate voltage to control its Josephson energy, the gatemon can reach the strong
coupling regime to a microwave cavity. In the dispersive regime, we extract the energy relaxation time T1∼0.56 μs and the dephasing time T∗2∼0.38 μs. Since thin InAs-Al nanowires can have fewer or single sub-band occupation and recent transport experiment shows the existence of nearly quantized zero-bias conductance peaks, our result holds relevancy for detecting Majorana zero modes in thin InAs-Al nanowires using circuit quantum electrodynamics.
Quantum Computation of Frequency-Domain Molecular Response Properties Using a Three-Qubit iToffoli Gate
The quantum computation of molecular response properties on near-term quantum hardware is a topic of significant interest. While computing time-domain response properties is in principle
straightforward due to the natural ability of quantum computers to simulate unitary time evolution, circuit depth limitations restrict the maximum time that can be simulated and hence the extraction of frequency-domain properties. Computing properties directly in the frequency domain is therefore desirable, but the circuits require large depth when the typical hardware gate set consisting of single- and two-qubit gates is used. Here, we report the experimental quantum computation of the response properties of diatomic molecules directly in the frequency domain using a three-qubit iToffoli gate, enabling a reduction in circuit depth by a factor of two. We show that the molecular properties obtained with the iToffoli gate exhibit comparable or better agreement with theory than those obtained with the native CZ gates. Our work is among the first demonstrations of the practical usage of a native multi-qubit gate in quantum simulation, with diverse potential applications to the simulation of quantum many-body systems on near-term digital quantum computers.
07
Feb
2023
Argon milling induced decoherence mechanisms in superconducting quantum circuits
The fabrication of superconducting circuits requires multiple deposition, etch and cleaning steps, each possibly introducing material property changes and microscopic defects. In this
work, we specifically investigate the process of argon milling, a potentially coherence limiting step, using niobium and aluminum superconducting resonators as a proxy for surface-limited behavior of qubits. We find that niobium microwave resonators exhibit an order of magnitude decrease in quality-factors after surface argon milling, while aluminum resonators are resilient to the same process. Extensive analysis of the niobium surface shows no change in the suboxide composition due to argon milling, while two-tone spectroscopy measurements reveal an increase in two-level system electrical dipole moments, indicating a structurally altered niobium oxide hosting larger two-level system defects. However, a short dry etch can fully recover the argon milling induced losses on niobium, offering a potential route towards state-of-the-art overlap Josephson junction qubits with niobium circuitry.
06
Feb
2023
Low-loss interconnects for modular superconducting quantum processors
Scaling is now a key challenge in superconducting quantum computing. One solution is to build modular systems in which smaller-scale quantum modules are individually constructed and
calibrated, and then assembled into a larger architecture. This, however, requires the development of suitable interconnects. Here, we report low-loss interconnects based on pure aluminium coaxial cables and on-chip impedance transformers featuring quality factors up to 8.1×105, which is comparable to the performance of our transmon qubits fabricated on single-crystal sapphire substrate. We use these interconnects to link five quantum modules with inter-module quantum state transfer and Bell state fidelities up to 99\%. To benchmark the overall performance of the processor, we create maximally-entangled, multi-qubit Greenberger-Horne-Zeilinger (GHZ) states. The generated inter-module four-qubit GHZ state exhibits 92.0\% fidelity. We also entangle up to 12 qubits in a GHZ state with 55.8±1.8% fidelity, which is above the genuine multipartite entanglement threshold of 1/2. These results represent a viable modular approach for large-scale superconducting quantum processors.
01
Feb
2023
Scheme for parity-controlled multi-qubit gates with superconducting qubits
Multi-qubit parity measurements are at the core of many quantum error correction schemes. Extracting multi-qubit parity information typically involves using a sequence of multiple two-qubit
gates. In this paper, we propose a superconducting circuit device with native support for multi-qubit parity-controlled gates (PCG). These are gates that perform rotations on a parity ancilla based on the multi-qubit parity operator of adjacent qubits, and can be directly used to perform multi-qubit parity measurements. The circuit consists of a set of concatenated Josephson ring modulators and effectively realizes a set of transmon-like qubits with strong longitudinal nearest-neighbor couplings. PCGs are implemented by applying microwave drives to the parity ancilla at specific frequencies. We investigate the scheme’s performance with numerical simulation using realistic parameter choices and decoherence rates, and find that the device can perform four-qubit PCGs in 30 ns with process fidelity surpassing 99%. Furthermore, we study the effects of parameter disorder and spurious coupling between next-nearest neighboring qubits. Our results indicate that this approach to realizing PCGs constitute an interesting candidate for near-term quantum error correction experiments.
31
Jan
2023
Exceptional-point-assisted entanglement, squeezing, and reset in a chain of three superconducting resonators
The interplay between coherent and dissipative dynamics required in various control protocols of quantum technology has motivated studies of open-system degeneracies, referred to as
exceptional points (EPs). Here, we introduce a scheme for fast quantum-state synthesis using exceptional-point engineering in a lossy chain of three superconducting resonators. We theoretically find that the rich physics of EPs can be used to identify regions in the parameter space that favor a fast and quasi-stable transfer of squeezing and entanglement, or a fast reset of the system. For weakly interacting resonators with the coupling strength g, the obtained quasi-stabilization time scales are identified as 1/(22‾√g), and reset infidelities below 10−5 are obtained with a waiting time of roughly 6/g in the case of weakly squeezed resonators. Our results shed light on the role of EPs in multimode Gaussian systems and pave the way for optimized distribution of squeezing and entanglement between different nodes of a photonic network using dissipation as a resource.