Alternating Bias Assisted Annealing of Amorphous Oxide Tunnel Junctions

  1. David P. Pappas,
  2. Mark Field,
  3. Cameron Kopas,
  4. Joel A. Howard,
  5. Xiqiao Wang,
  6. Ella Lachman,
  7. Lin Zhou,
  8. Jinsu Oh,
  9. Kameshwar Yadavalli,
  10. Eyob A. Sete,
  11. Andrew Bestwick,
  12. Matthew J. Kramer,
  13. and Joshua Y. Mutus
We demonstrate a transformational technique for controllably tuning the electrical properties of fabricated thermally oxidized amorphous aluminum-oxide tunnel junctions. Using conventional
test equipment to apply an alternating bias to a heated tunnel barrier, giant increases in the room temperature resistance, greater than 70%, can be achieved. The rate of resistance change is shown to be strongly temperature-dependent, and is independent of junction size in the sub-micron regime. In order to measure their tunneling properties at mK temperatures, we characterized transmon qubit junctions treated with this alternating-bias assisted annealing (ABAA) technique. The measured frequencies follow the Ambegaokar-Baratoff relation between the shifted resistance and critical current. Further, these studies show a reduction of junction-contributed loss on the order of ≈2×10−6, along with a significant reduction in resonant- and off-resonant-two level system defects when compared to untreated samples. Imaging with high-resolution TEM shows that the barrier is still predominantly amorphous with a more uniform distribution of aluminum coordination across the barrier relative to untreated junctions. This new approach is expected to be widely applicable to a broad range of devices that rely on amorphous aluminum oxide, as well as the many other metal-insulator-metal structures used in modern electronics.

Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium Surface Encapsulation

  1. Mustafa Bal,
  2. Akshay A. Murthy,
  3. Shaojiang Zhu,
  4. Francesco Crisa,
  5. Xinyuan You,
  6. Ziwen Huang,
  7. Tanay Roy,
  8. Jaeyel Lee,
  9. David van Zanten,
  10. Roman Pilipenko,
  11. Ivan Nekrashevich,
  12. Daniel Bafia,
  13. Yulia Krasnikova,
  14. Cameron J. Kopas,
  15. Ella O. Lachman,
  16. Duncan Miller,
  17. Josh Y. Mutus,
  18. Matthew J. Reagor,
  19. Hilal Cansizoglu,
  20. Jayss Marshall,
  21. David P. Pappas,
  22. Kim Vu,
  23. Kameshwar Yadavalli,
  24. Jin-Su Oh,
  25. Lin Zhou,
  26. Matthew J. Kramer,
  27. Dominic P. Goronzy,
  28. Carlos G. Torres-Castanedo,
  29. Graham Pritchard,
  30. Vinayak P. Dravid,
  31. James M. Rondinelli,
  32. Michael J. Bedzyk,
  33. Mark C. Hersam,
  34. John Zasadzinski,
  35. Jens Koch,
  36. James A. Sauls,
  37. Alexander Romanenko,
  38. and Anna Grassellino
We present a novel transmon qubit fabrication technique that yields systematic improvements in T1 coherence times. We fabricate devices using an encapsulation strategy that involves
passivating the surface of niobium and thereby preventing the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface structure, this comparative investigation examining different capping materials and film substrates across different qubit foundries definitively demonstrates the detrimental impact that niobium oxides have on the coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T1 coherence times 2 to 5 times longer than baseline niobium qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 200 microseconds. Our comparative structural and chemical analysis suggests that amorphous niobium suboxides may induce higher losses. These results are in line with high-accuracy measurements of the niobium oxide loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF) cavities. This new surface encapsulation strategy enables further reduction of dielectric losses via passivation with ambient-stable materials, while preserving fabrication and scalable manufacturability thanks to the compatibility with silicon processes.