Versatile parametric coupling between two statically decoupled transmon qubits

  1. X. Y. Jin,
  2. K. Cicak,
  3. Z. Parrott,
  4. S. Kotler,
  5. F. Lecocq,
  6. J. Teufel,
  7. J. Aumentado,
  8. E. Kapit,
  9. and R. W. Simmonds
Parametric coupling is a powerful technique for generating tunable interactions between superconducting circuits using only microwave tones. Here, we present a highly flexible parametric
coupling scheme demonstrated with two transmon qubits, which can be employed for multiple purposes, including the removal of residual ZZ coupling and the implementation of driven swap or swap-free controlled-Z (cZ) gates. Our fully integrated coupler design is only weakly flux tunable, cancels static linear coupling between the qubits, avoids internal coupler dynamics or excitations, and operates with rf-pulses. We show that residual ZZ coupling can be reduced with a parametric dispersive tone down to an experimental uncertainty of 5.5 kHz. Additionally, randomized benchmarking reveals that the parametric swap cZ gate achieves a fidelity of 99.4% in a gate duration of 60 ns, while the dispersive parametric swap-free cZ gate attains a fidelity of 99.5% in only 30 ns. We believe this is the fastest and highest fidelity gate achieved with on-chip parametric coupling to date. We further explore the dependence of gate fidelity on gate duration for both p-swap and p-swap-free cZ gates, providing insights into the possible error sources for these gates. Overall, our findings demonstrate a versatility, precision, speed, and high performance not seen in previous parametric approaches. Finally, our design opens up new possibilities for creating larger, modular systems of superconducting qubits.

Strong parametric dispersive shifts in a statically decoupled multi-qubit cavity QED system

  1. T. Noh,
  2. Z. Xiao,
  3. K. Cicak,
  4. X. Y. Jin,
  5. E. Doucet,
  6. J. Teufel,
  7. J. Aumentado,
  8. L. C. G. Govia,
  9. L. Ranzani,
  10. A. Kamal,
  11. and R. W. Simmonds
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing. The ability to tune the dispersive
shifts of a cavity QED system provides more functionality for performing either quantum measurements or logical manipulations. Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID. Our design balances the mutual capacitive and inductive circuit components so that both qubits are highly decoupled from the cavity, offering protection from decoherence processes. We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically. The strength and detuning of this cavity QED interaction can be fully controlled through the choice of the parametric pump frequency and amplitude. As a practical demonstration, we perform pulsed parametric dispersive readout of both qubits while statically decoupled from the cavity. The dispersive frequency shifts of the cavity mode follow the expected magnitude and sign based on simple theory that is supported by a more thorough theoretical investigation. This parametric approach creates a new tunable cavity QED framework for developing quantum information systems with various future applications, such as entanglement and error correction via multi-qubit parity readout, state and entanglement stabilization, and parametric logical gates.