Loss resilience of driven-dissipative remote entanglement in chiral waveguide quantum electrodynamics

  1. Abdullah Irfan,
  2. Mingxing Yao,
  3. Andrew Lingenfelter,
  4. Xi Cao,
  5. Aashish A. Clerk,
  6. and Wolfgang Pfaff
Establishing limits of entanglement in open quantum systems is a problem of fundamental interest, with strong implications for applications in quantum information science. Here, we
study limits of entanglement stabilization between remote qubits. We theoretically investigate the loss resilience of driven-dissipative entanglement between remote qubits coupled to a chiral waveguide. We find that by coupling a pair of storage qubits to the two driven qubits, the steady state can be tailored such that the storage qubits show a degree of entanglement that is higher than what can be achieved with only two driven qubits coupled to the waveguide. By reducing the degree of entanglement of the driven qubits, we show that the entanglement between the storage qubits becomes more resilient to waveguide loss. Our analytical and numerical results offer insights into how waveguide loss limits the degree of entanglement in this driven-dissipative system, and offers important guidance for remote entanglement stabilization in the laboratory, for example using superconducting circuits.

Broadband Bandpass Purcell Filter for Circuit Quantum Electrodynamics

  1. Haoxiong Yan,
  2. Xuntao Wu,
  3. Andrew Lingenfelter,
  4. Yash J. Joshi,
  5. Gustav Andersson,
  6. Christopher R. Conner,
  7. Ming-Han Chou,
  8. Joel Grebel,
  9. Jacob M. Miller,
  10. Rhys G. Povey,
  11. Hong Qiao,
  12. Aashish A. Clerk,
  13. and Andrew N. Cleland
In circuit quantum electrodynamics (QED), qubits are typically measured using dispersively-coupled readout resonators. Coupling between each readout resonator and its electrical environment
however reduces the qubit lifetime via the Purcell effect. Inserting a Purcell filter counters this effect while maintaining high readout fidelity, but reduces measurement bandwidth and thus limits multiplexing readout capacity. In this letter, we develop and implement a multi-stage bandpass Purcell filter that yields better qubit protection while simultaneously increasing measurement bandwidth and multiplexed capacity. We report on the experimental performance of our transmission-line–based implementation of this approach, a flexible design that can easily be integrated with current scaled-up, long coherence time superconducting quantum processors.

Fully Directional Quantum-limited Phase-Preserving Amplifier

  1. Gangqiang Liu,
  2. Andrew Lingenfelter,
  3. Vidul Joshi,
  4. Nicholas E. Frattini,
  5. Volodymyr V. Sivak,
  6. Shyam Shankar,
  7. and Michel H. Devoret
We present a way to achieve fully directional, quantum-limited phase-preserving amplification in a four-port, four-mode superconducting Josephson circuit by utilizing interference between
six parametric processes that couple all four modes. Full directionality, defined as the reverse isolation surpassing forward gain between the matched input and output ports of the amplifier, ensures its robustness against impedance mismatch that might be present at its output port during applications. Unlike existing directional phase-preserving amplifiers, both the minimal back-action and the quantum-limited added noise of this amplifier remains unaffected by noise incident on its output port. In addition, the matched input and output ports allow direct on-chip integration of these amplifiers with other circuit QED components, facilitating scaling up of superconducting quantum processors.