Photon-noise-tolerant dispersive readout of a superconducting qubit using a nonlinear Purcell filter

  1. Yoshiki Sunada,
  2. Kenshi Yuki,
  3. Zhiling Wang,
  4. Takeaki Miyamura,
  5. Jesper Ilves,
  6. Kohei Matsuura,
  7. Peter A. Spring,
  8. Shuhei Tamate,
  9. Shingo Kono,
  10. and Yasunobu Nakamura
Residual noise photons in a readout resonator become a major source of dephasing for a superconducting qubit when the resonator is optimized for a fast, high-fidelity dispersive readout.
Here, we propose and demonstrate a nonlinear Purcell filter that suppresses such an undesired dephasing process without sacrificing the readout performance. When a readout pulse is applied, the filter automatically reduces the effective linewidth of the readout resonator, increasing the sensitivity of the qubit to the input field. The noise tolerance of the device we fabricated is shown to be enhanced by a factor of three relative to a device with a linear filter. The measurement rate is enhanced by another factor of three by utilizing the bifurcation of the nonlinear filter. A readout fidelity of 99.4% and a QND fidelity of 99.2% are achieved using a 40-ns readout pulse. The nonlinear Purcell filter will be an effective tool for realizing a fast, high-fidelity readout without compromising the coherence time of the qubit.

Mechanically Induced Correlated Errors on Superconducting Qubits with Relaxation Times Exceeding 0.4 Milliseconds

  1. Shingo Kono,
  2. Jiahe Pan,
  3. Mahdi Chegnizadeh,
  4. Xuxin Wang,
  5. Amir Youssefi,
  6. Marco Scigliuzzo,
  7. and Tobias J. Kippenberg
Superconducting qubits are one of the most advanced candidates to realize scalable and fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes,
the origin of the loss mechanism for state-of-the-art qubits is still subject to investigation. Moreover, successful implementation of quantum error correction requires negligible correlated errors among qubits. Here, we realize ultra-coherent superconducting transmon qubits based on niobium capacitor electrodes, with lifetimes exceeding 0.4 ms. By employing a nearly quantum-limited readout chain based on a Josephson traveling wave parametric amplifier, we are able to simultaneously record bit-flip errors occurring in a multiple-qubit device, revealing that the bit-flip errors in two highly coherent qubits are strongly correlated. By introducing a novel time-resolved analysis synchronized with the operation of the pulse tube cooler in a dilution refrigerator, we find that a pulse tube mechanical shock causes nonequilibrium dynamics of the qubits, leading to correlated bit-flip errors as well as transitions outside of the computational state space. Our observations confirm that coherence improvements are still attainable in transmon qubits based on the superconducting material that has been commonly used in the field. In addition, our findings are consistent with qubit dynamics induced by two-level systems and quasiparticles, deepening our understanding of the qubit error mechanisms. Finally, these results inform possible new error-mitigation strategies by decoupling superconducting qubits from their mechanical environments.

Fast readout and reset of a superconducting qubit coupled to a resonator with an intrinsic Purcell filter

  1. Yoshiki Sunada,
  2. Shingo Kono,
  3. Jesper Ilves,
  4. Shuhei Tamate,
  5. Takanori Sugiyama,
  6. Yutaka Tabuchi,
  7. and Yasunobu Nakamura
Coupling a resonator to a superconducting qubit enables various operations on the qubit including dispersive readout and unconditional reset. The speed of these operations is limited
by the external decay rate of the resonator. However, increasing the decay rate also increases the rate of qubit decay via the resonator, limiting the qubit lifetime. Here, we demonstrate that the resonator-mediated qubit decay can be suppressed by utilizing the distributed-element, multi-mode nature of the resonator. We show that the suppression exceeds two orders of magnitude over a bandwidth of 600 MHz. We use this „intrinsic Purcell filter“ to demonstrate a 40-ns readout with 99.1% fidelity and a 100-ns reset with residual excitation of less than 1.7%.

Superconducting circuit optomechanics in topological lattices

  1. Amir Youssefi,
  2. Andrea Bancora,
  3. Shingo Kono,
  4. Mahdi Chegnizadeh,
  5. Tatiana Vovk,
  6. Jiahe Pan,
  7. and Tobias J. Kippenberg
Cavity optomechanics enables controlling mechanical motion via radiation pressure interaction, and has contributed to the quantum control of engineered mechanical systems ranging from
kg scale LIGO mirrors to nano-mechanical systems, enabling entanglement, squeezing of mechanical objects, to position measurements at the standard quantum limit, and quantum transduction. Yet, nearly all prior schemes have employed single- or few-mode optomechanical systems. In contrast, novel dynamics and applications are expected when utilizing optomechanical arrays and lattices, which enable to synthesize non-trivial band structures, and have been actively studied in the field of circuit QED. Superconducting microwave optomechanical circuits are a promising platform to implement such lattices, but have been compounded by strict scaling limitations. Here we overcome this challenge and realize superconducting circuit optomechanical lattices. We demonstrate non-trivial topological microwave modes in 1-D optomechanical chains as well as 2-D honeycomb lattices, realizing the canonical Su-Schrieffer-Heeger (SSH) model. Exploiting the embedded optomechanical interaction, we show that it is possible to directly measure the mode shapes, without using any local probe or inducing perturbation. This enables us to reconstruct the full underlying lattice Hamiltonian beyond tight-binding approximations, and directly measure the existing residual disorder. The latter is found to be sufficiently small to observe fully hybridized topological edge modes. Such optomechanical lattices, accompanied by the measurement techniques introduced, offers an avenue to explore out of equilibrium physics in optomechanical lattices such as quantum and quench dynamics, topological properties and more broadly, emergent nonlinear dynamics in complex optomechanical systems with a large number of degrees of freedoms.

Dissipation-based Quantum Sensing of Magnons with a Superconducting Qubit

  1. Samuel Piotr Wolski,
  2. Dany Lachance-Quirion,
  3. Yutaka Tabuchi,
  4. Shingo Kono,
  5. Atsushi Noguchi,
  6. Koji Usami,
  7. and Yasunobu Nakamura
Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields. Here, we experimentally demonstrate quantum sensing of the steady-state magnon
population in a magnetostatic mode of a ferrimagnetic crystal. Dispersively coupling the magnetostatic mode to a superconducting qubit allows the detection of magnons using Ramsey interferometry with a sensitivity on the order of 10−3 magnons/Hz−−−√. The protocol is based on dissipation as dephasing via fluctuations in the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.

Fast parametric two-gubit gates with suppressed residual interaction using a parity-violated superconducting qubit

  1. Atsushi Noguchi,
  2. Alto Osada,
  3. Shumpei Masuda,
  4. Shingo Kono,
  5. Kentaro Heya,
  6. Samuel Piotr Wolski,
  7. Hiroki Takahashi,
  8. Takanori Sugiyama,
  9. Dany Lachance-Quirion,
  10. and Yasunobu Nakamura
We demonstrate fast two-qubit gates using a parity-violated superconducting qubit consisting of a capacitively-shunted asymmetric Josephson-junction loop under a finite magnetic flux
bias. The second-order nonlinearity manifesting in the qubit enables the interaction with a neighboring single-junction transmon qubit via first-order inter-qubit sideband transitions with Rabi frequencies up to 30~MHz. Simultaneously, the unwanted static longitudinal~(ZZ) interaction is eliminated with ac Stark shifts induced by a continuous microwave drive near-resonant to the sideband transitions. The average fidelities of the two-qubit gates are evaluated with randomized benchmarking as 0.967, 0.951, 0.956 for CZ, iSWAP and SWAP gates, respectively.

Breaking the trade-off between fast control and long lifetime of a superconducting qubit

  1. Shingo Kono,
  2. Kazuki Koshino,
  3. Dany Lachance-Quirion,
  4. Arjan F. Van Loo,
  5. Yutaka Tabuchi,
  6. Atsushi Noguchi,
  7. and Yasunobu Nakamura
The rapid development in designs and fabrication techniques of superconducting qubits has helped making coherence times of qubits longer. In the near future, however, the radiative
decay of a qubit into its control line will be a fundamental limitation, imposing a trade-off between fast control and long lifetime of the qubit. In this work, we successfully break this trade-off by strongly coupling another superconducting qubit along the control line. This second qubit, which we call a Josephson quantum filter~(JQF), prevents the qubit from emitting microwave photons and thus suppresses its relaxation, while faithfully transmitting large-amplitude control microwave pulses due to the saturation of the quantum filter, enabling fast qubit control. We observe an improvement of the qubit relaxation time without a reduction of the Rabi frequency. This device could potentially help in the realization of a large-scale superconducting quantum information processor in terms of the heating of the qubit environments and the crosstalk between qubits.

On-demand generation and characterization of a microwave time-bin qubit

  1. Jesper Ilves,
  2. Shingo Kono,
  3. Yoshiki Sunada,
  4. Shota Yamazaki,
  5. Minkyu Kim,
  6. Kazuki Koshino,
  7. and Yasunobu Nakamura
Superconducting circuits offer a scalable platform for the construction of large-scale quantum networks where information can be encoded in multiple temporal modes of propagating microwaves.
Characterization of such microwave signals with a method extendable to an arbitrary number of temporal modes with a single detector and demonstration of their phase-robust nature are of great interest. Here we show the on-demand generation and Wigner tomography of a microwave time-bin qubit with superconducting circuit quantum electrodynamics architecture. We perform the tomography with a single heterodyne detector by dynamically changing the measurement quadrature with a phase-sensitive amplifier independently for the two temporal modes. By generating and measuring the qubits with hardware lacking a shared phase reference, we demonstrate conservation of phase information in each time-bin qubit generated.

Entanglement-based single-shot detection of a single magnon with a superconducting qubit

  1. Dany Lachance-Quirion,
  2. Samuel Piotr Wolski,
  3. Yutaka Tabuchi,
  4. Shingo Kono,
  5. Koji Usami,
  6. and Yasunobu Nakamura
The recent development of hybrid systems based on superconducting circuits has opened up the possibility of engineering sensors of quanta of different degrees of freedom. Quantum magnonics,
which aims to control and read out quanta of collective spin excitations in magnetically-ordered systems, furthermore provides unique opportunities for advances in both the study of magnetism and the development of quantum technologies. Using a superconducting qubit as a quantum sensor, we report the detection of a single magnon in a millimeter-sized ferromagnetic crystal with a quantum efficiency of up to~0.71. The detection is based on the entanglement between a magnetostatic mode and the qubit, followed by a single-shot measurement of the qubit state. This proof-of-principle experiment establishes the single-photon detector counterpart for magnonics.

Logical measurement-based quantum computation in circuit-QED

  1. Jaewoo Joo,
  2. Chang-Woo Lee,
  3. Shingo Kono,
  4. and Jaewan Kim
We propose a new scheme of measurement-based quantum computation (MBQC) using an error-correcting code against photon-loss in circuit quantum electrodynamics. We describe a specific
protocol of logical single-qubit gates given by sequential cavity measurements for logical MBQC and a generalised Schr\“odinger cat state is used for a continuous-variable (CV) logical qubit captured in a microwave cavity. It is assumed that a three CV-qudit entangled state is initially prepared in three jointed cavities and the microwave qudit states are individually controlled, operated, and measured through a readout resonator coupled with an ancillary superconducting qubit. We then examine a practical approach of how to create the CV-qudit cluster state via a cross-Kerr interaction induced by intermediary superconducting qubits between neighbouring cavities under the Jaynes-Cummings Hamiltonian. This approach could be scalable for building 2D logical cluster states and therefore will pave a new pathway of logical MBQC in superconducting circuits toward fault-tolerant quantum computing.