Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium Surface Encapsulation

  1. Mustafa Bal,
  2. Akshay A. Murthy,
  3. Shaojiang Zhu,
  4. Francesco Crisa,
  5. Xinyuan You,
  6. Ziwen Huang,
  7. Tanay Roy,
  8. Jaeyel Lee,
  9. David van Zanten,
  10. Roman Pilipenko,
  11. Ivan Nekrashevich,
  12. Daniel Bafia,
  13. Yulia Krasnikova,
  14. Cameron J. Kopas,
  15. Ella O. Lachman,
  16. Duncan Miller,
  17. Josh Y. Mutus,
  18. Matthew J. Reagor,
  19. Hilal Cansizoglu,
  20. Jayss Marshall,
  21. David P. Pappas,
  22. Kim Vu,
  23. Kameshwar Yadavalli,
  24. Jin-Su Oh,
  25. Lin Zhou,
  26. Matthew J. Kramer,
  27. Dominic P. Goronzy,
  28. Carlos G. Torres-Castanedo,
  29. Graham Pritchard,
  30. Vinayak P. Dravid,
  31. James M. Rondinelli,
  32. Michael J. Bedzyk,
  33. Mark C. Hersam,
  34. John Zasadzinski,
  35. Jens Koch,
  36. James A. Sauls,
  37. Alexander Romanenko,
  38. and Anna Grassellino
We present a novel transmon qubit fabrication technique that yields systematic improvements in T1 coherence times. We fabricate devices using an encapsulation strategy that involves
passivating the surface of niobium and thereby preventing the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface structure, this comparative investigation examining different capping materials and film substrates across different qubit foundries definitively demonstrates the detrimental impact that niobium oxides have on the coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T1 coherence times 2 to 5 times longer than baseline niobium qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 200 microseconds. Our comparative structural and chemical analysis suggests that amorphous niobium suboxides may induce higher losses. These results are in line with high-accuracy measurements of the niobium oxide loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF) cavities. This new surface encapsulation strategy enables further reduction of dielectric losses via passivation with ambient-stable materials, while preserving fabrication and scalable manufacturability thanks to the compatibility with silicon processes.

Characterization of Nb films for superconducting qubits using phase boundary measurements

  1. Kevin M. Ryan,
  2. Carlos G. Torres-Castanedo,
  3. Dominic P. Goronzy,
  4. David A. Garcia Wetter,
  5. Matthew J. Reagor,
  6. Mark Field,
  7. Cameron J. Kopas,
  8. Jayss Marshall,
  9. Michael J. Bedzyk,
  10. Mark C. Hersam,
  11. and Venkat Chandrasekhar
Continued advances in superconducting qubit performance require more detailed understandings of the many sources of decoherence. Within these devices, two-level systems arise due to
defects, interfaces, and grain boundaries, and are thought to be a major source of qubit decoherence at millikelvin temperatures. In addition to Al, Nb is a commonly used metalization layer for superconducting qubits. Consequently, a significant effort is required to develop and qualify processes that mitigate defects in Nb films. As the fabrication of complete superconducting qubits and their characterization at millikelvin temperatures is a time and resource intensive process, it is desirable to have measurement tools that can rapidly characterize the properties of films and evaluate different treatments. Here we show that measurements of the variation of the superconducting critical temperature Tc with an applied external magnetic field H (of the phase boundary Tc−H) performed with very high resolution show features that are directly correlated with the structure of the Nb films. In combination with x-ray diffraction measurements, we show that one can even distinguish variations quality and crystal orientation of the grains in a Nb film by small but reproducible changes in the measured superconducting phase boundary.