Systematic Improvements in Transmon Qubit Coherence Enabled by Niobium Surface Encapsulation

  1. Mustafa Bal,
  2. Akshay A. Murthy,
  3. Shaojiang Zhu,
  4. Francesco Crisa,
  5. Xinyuan You,
  6. Ziwen Huang,
  7. Tanay Roy,
  8. Jaeyel Lee,
  9. David van Zanten,
  10. Roman Pilipenko,
  11. Ivan Nekrashevich,
  12. Daniel Bafia,
  13. Yulia Krasnikova,
  14. Cameron J. Kopas,
  15. Ella O. Lachman,
  16. Duncan Miller,
  17. Josh Y. Mutus,
  18. Matthew J. Reagor,
  19. Hilal Cansizoglu,
  20. Jayss Marshall,
  21. David P. Pappas,
  22. Kim Vu,
  23. Kameshwar Yadavalli,
  24. Jin-Su Oh,
  25. Lin Zhou,
  26. Matthew J. Kramer,
  27. Dominic P. Goronzy,
  28. Carlos G. Torres-Castanedo,
  29. Graham Pritchard,
  30. Vinayak P. Dravid,
  31. James M. Rondinelli,
  32. Michael J. Bedzyk,
  33. Mark C. Hersam,
  34. John Zasadzinski,
  35. Jens Koch,
  36. James A. Sauls,
  37. Alexander Romanenko,
  38. and Anna Grassellino
We present a novel transmon qubit fabrication technique that yields systematic improvements in T1 coherence times. We fabricate devices using an encapsulation strategy that involves
passivating the surface of niobium and thereby preventing the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface structure, this comparative investigation examining different capping materials and film substrates across different qubit foundries definitively demonstrates the detrimental impact that niobium oxides have on the coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T1 coherence times 2 to 5 times longer than baseline niobium qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 200 microseconds. Our comparative structural and chemical analysis suggests that amorphous niobium suboxides may induce higher losses. These results are in line with high-accuracy measurements of the niobium oxide loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF) cavities. This new surface encapsulation strategy enables further reduction of dielectric losses via passivation with ambient-stable materials, while preserving fabrication and scalable manufacturability thanks to the compatibility with silicon processes.

Potential Nanoscale Sources of Decoherence in Niobium based Transmon Qubit Architectures

  1. Akshay A. Murthy,
  2. Paul Masih Das,
  3. Stephanie M. Ribet,
  4. Cameron Kopas,
  5. Jaeyel Lee,
  6. Matthew J. Reagor,
  7. Lin Zhou,
  8. Matthew J. Kramer,
  9. Mark C. Hersam,
  10. Mattia Checchin,
  11. Anna Grassellino,
  12. Roberto dos Reis,
  13. Vinayak P. Dravid,
  14. and Alexander Romanenko
Superconducting thin films of niobium have been extensively employed in transmon qubit architectures. Although these architectures have demonstrated remarkable improvements in recent
years, further improvements in performance through materials engineering will aid in large-scale deployment. Here, we use information retrieved from electron microscopy and analysis to conduct a detailed assessment of potential decoherence sources in transmon qubit test devices. In the niobium thin film, we observe the presence of localized strain at interfaces, which may amplify interactions between two-level systems and impose limits on T1 and T2 relaxation times. Additionally, we observe the presence of a surface oxide with varying stoichiometry and bond distances, which can generate a broad two-level system noise spectrum. Finally, a similarly disordered and rough interface is observed between Nb and the Si substrate. We propose that this interface can also degrade the overall superconducting properties.