High-Coherence Kerr-cat qubit in 2D architecture

  1. Ahmed Hajr,
  2. Bingcheng Qing,
  3. Ke Wang,
  4. Gerwin Koolstra,
  5. Zahra Pedramrazi,
  6. Ziqi Kang,
  7. Larry Chen,
  8. Long B. Nguyen,
  9. Christian Junger,
  10. Noah Goss,
  11. Irwin Huang,
  12. Bibek Bhandari,
  13. Nicholas E. Frattini,
  14. Shruti Puri,
  15. Justin Dressel,
  16. Andrew Jordan,
  17. David Santiago,
  18. and Irfan Siddiqi
The Kerr-cat qubit is a bosonic qubit in which multi-photon Schrodinger cat states are stabilized by applying a two-photon drive to an oscillator with a Kerr nonlinearity. The suppressed
bit-flip rate with increasing cat size makes this qubit a promising candidate to implement quantum error correction codes tailored for noise-biased qubits. However, achieving strong light-matter interactions necessary for stabilizing and controlling this qubit has traditionally required strong microwave drives that heat the qubit and degrade its performance. In contrast, increasing the coupling to the drive port removes the need for strong drives at the expense of large Purcell decay. By integrating an effective band-block filter on-chip, we overcome this trade-off and realize a Kerr-cat qubit in a scalable 2D superconducting circuit with high coherence. This filter provides 30 dB of isolation at the qubit frequency with negligible attenuation at the frequencies required for stabilization and readout. We experimentally demonstrate quantum non-demolition readout fidelity of 99.6% for a cat with 8 photons. Also, to have high-fidelity universal control over this qubit, we combine fast Rabi oscillations with a new demonstration of the X(90) gate through phase modulation of the stabilization drive. Finally, the lifetime in this architecture is examined as a function of the cat size of up to 10 photons in the oscillator achieving a bit-flip time higher than 1 ms and only a linear decrease in the phase-flip time, in good agreement with the theoretical analysis of the circuit. Our qubit shows promise as a building block for fault-tolerant quantum processors with a small footprint.

Fully Directional Quantum-limited Phase-Preserving Amplifier

  1. Gangqiang Liu,
  2. Andrew Lingenfelter,
  3. Vidul Joshi,
  4. Nicholas E. Frattini,
  5. Volodymyr V. Sivak,
  6. Shyam Shankar,
  7. and Michel H. Devoret
We present a way to achieve fully directional, quantum-limited phase-preserving amplification in a four-port, four-mode superconducting Josephson circuit by utilizing interference between
six parametric processes that couple all four modes. Full directionality, defined as the reverse isolation surpassing forward gain between the matched input and output ports of the amplifier, ensures its robustness against impedance mismatch that might be present at its output port during applications. Unlike existing directional phase-preserving amplifiers, both the minimal back-action and the quantum-limited added noise of this amplifier remains unaffected by noise incident on its output port. In addition, the matched input and output ports allow direct on-chip integration of these amplifiers with other circuit QED components, facilitating scaling up of superconducting quantum processors.

The squeezed Kerr oscillator: spectral kissing and phase-flip robustness

  1. Nicholas E. Frattini,
  2. Rodrigo G. Cortiñas,
  3. Jayameenakshi Venkatraman,
  4. Xu Xiao,
  5. Qile Su,
  6. Chan U Lei,
  7. Benjamin J. Chapman,
  8. Vidul R. Joshi,
  9. S. M. Girvin,
  10. Robert J. Schoelkopf,
  11. Shruti Puri,
  12. and Michel H. Devoret
By applying a microwave drive to a specially designed Josephson circuit, we have realized an elementary quantum optics model, the squeezed Kerr oscillator. This model displays, as the
squeezing amplitude is increased, a cross-over from a single ground state regime to a doubly-degenerate ground state regime. In the latter case, the ground state manifold is spanned by Schrödinger-cat states, i.e. quantum superpositions of coherent states with opposite phases. For the first time, having resolved up to the tenth excited state in a spectroscopic experiment, we confirm that the proposed emergent static effective Hamiltonian correctly describes the system, despite its driven character. We also find that the lifetime of the coherent state components of the cat states increases in steps as a function of the squeezing amplitude. We interpret the staircase pattern as resulting from pairwise level kissing in the excited state spectrum. Considering the Kerr-cat qubit encoded in this ground state manifold, we achieve for the first time quantum nondemolition readout fidelities greater than 99%, and enhancement of the phase-flip lifetime by more than two orders of magnitude, while retaining universal quantum control. Our experiment illustrates the crucial role of parametric drive Hamiltonian engineering for hardware-efficient quantum computation.

Observation of wave-packet branching through an engineered conical intersection

  1. Christopher S. Wang,
  2. Nicholas E. Frattini,
  3. Benjamin J. Chapman,
  4. Shruti Puri,
  5. Steven M. Girvin,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
In chemical reactions, the interplay between coherent evolution and dissipation is central to determining key properties such as the rate and yield. Of particular interest are cases
where two potential energy surfaces cross at features known as conical intersections (CIs), resulting in nonadiabatic dynamics that may promote ultrafast and highly efficient reactions when rovibrational damping is present. A prominent chemical reaction that involves a CI is the cis-trans isomerization reaction in rhodopsin, which is crucial to vision. CIs in real molecular systems are typically investigated via optical pump-probe spectroscopy, which has demanding spectral bandwidth and temporal resolution requirements, and where precise control of the environment is challenging. A complementary approach for understanding chemical reactions is to use quantum simulators that can provide access to a wider range of observables, though thus far combining strongly interacting linear (rovibrational) and nonlinear (electronic) degrees of freedom with engineered dissipation has yet to be demonstrated. Here, we create a tunable CI in a hybrid qubit-oscillator circuit QED processor and simultaneously track both a reactive wave-packet and electronic qubit in the time-domain. We identify dephasing of the electronic qubit as the mechanism that drives wave-packet branching along the reactive coordinate in our model. Furthermore, we directly observe enhanced branching when the wave-packet passes through the CI. Thus, the forces that influence a chemical reaction can be viewed as an effective measurement induced dephasing rate that depends on the position of the wave-packet relative to the CI. Our results set the groundwork for more complex simulations of chemical dynamics, offering deeper insight into the role of dissipation in determining macroscopic quantities of interest such as the quantum yield of a chemical reaction.

The Kerr-Cat Qubit: Stabilization, Readout, and Gates

  1. Alexander Grimm,
  2. Nicholas E. Frattini,
  3. Shruti Puri,
  4. Shantanu O. Mundhada,
  5. Steven Touzard,
  6. Mazyar Mirrahimi,
  7. Steven M. Girvin,
  8. Shyam Shankar,
  9. and Michel H. Devoret
Quantum superpositions of macroscopically distinct classical states, so-called Schrödinger cat states, are a resource for quantum metrology, quantum communication, and quantum computation.
In particular, the superpositions of two opposite-phase coherent states in an oscillator encode a qubit protected against phase-flip errors. However, several challenges have to be overcome in order for this concept to become a practical way to encode and manipulate error-protected quantum information. The protection must be maintained by stabilizing these highly excited states and, at the same time, the system has to be compatible with fast gates on the encoded qubit and a quantum non-demolition readout of the encoded information. Here, we experimentally demonstrate a novel method for the generation and stabilization of Schrödinger cat states based on the interplay between Kerr nonlinearity and single-mode squeezing in a superconducting microwave resonator. We show an increase in transverse relaxation time of the stabilized, error-protected qubit over the single-photon Fock-state encoding by more than one order of magnitude. We perform all single-qubit gate operations on time-scales more than sixty times faster than the shortest coherence time and demonstrate single-shot readout of the protected qubit under stabilization. Our results showcase the combination of fast quantum control with the robustness against errors intrinsic to stabilized macroscopic states and open up the possibility of using these states as resources in quantum information processing.