Fast analytic and numerical design of superconducting resonators in flip-chip architectures

  1. Hang-Xi Li,
  2. Daryoush Shiri,
  3. Sandoko Kosen,
  4. Marcus Rommel,
  5. Lert Chayanun,
  6. Andreas Nylander,
  7. Robert Rehammer,
  8. Giovanna Tancredi,
  9. Marco Caputo,
  10. Kestutis Grigoras,
  11. Leif Grönberg,
  12. Joonas Govenius,
  13. and Jonas Bylander
In superconducting quantum processors, the predictability of device parameters is of increasing importance as many labs scale up their systems to larger sizes in a 3D-integrated architecture.
In particular, the properties of superconducting resonators must be controlled well to ensure high-fidelity multiplexed readout of qubits. Here we present a method, based on conformal mapping techniques, to predict a resonator’s parameters directly from its 2D cross-section, without computationally heavy simulation. We demonstrate the method’s validity by comparing the calculated resonator frequency and coupling quality factor with those obtained through 3D finite-element-method simulation and by measurement of 15 resonators in a flip-chip-integrated architecture. We achieve a discrepancy of less than 2% between designed and measured frequencies, for 6-GHz resonators. We also propose a design method that reduces the sensitivity of the resonant frequency to variations in the inter-chip spacing.

Mitigation of frequency collisions in superconducting quantum processors

  1. Amr Osman,
  2. Jorge Fernàndez-Pendàs,
  3. Chris Warren,
  4. Sandoko Kosen,
  5. Marco Scigliuzzo,
  6. Anton Frisk Kockum,
  7. Giovanna Tancredi,
  8. Anita Fadavi Roudsari,
  9. and Jonas Bylander
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal crosstalk imposes constraints on the frequency separation between neighboring
qubits. The frequency uncertainty of transmon qubits arising from the fabrication process is attributed to deviations in the Josephson junction area, tunnel barrier thickness, and the qubit capacitor. We decrease the sensitivity to these variations by fabricating larger Josephson junctions and reduce the wafer-level standard deviation in resistance down to 2%. We characterize 32 identical transmon qubits and demonstrate the reproducibility of the qubit frequencies with a 40 MHz standard deviation (i.e. 1%) with qubit quality factors exceeding 2 million. We perform two-level-system (TLS) spectroscopy and observe no significant increase in the number of TLSs causing qubit relaxation. We further show by simulation that for our parametric-gate architecture, and accounting only for errors caused by the uncertainty of the qubit frequency, we can scale up to 100 qubits with an average of only 3 collisions between quantum-gate transition frequencies, assuming 2% crosstalk and 99.9% target gate fidelity.

Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters

  1. Anita Fadavi Roudsari,
  2. Daryoush Shiri,
  3. Hampus Renberg Nilsson,
  4. Giovanna Tancredi,
  5. Amr Osman,
  6. Ida-Maria Svensson,
  7. Marina Kudra,
  8. Marcus Rommel,
  9. Jonas Bylander,
  10. Vitaly Shumeiko,
  11. and Per Delsing
We report the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-wave mixing (3WM). To favor amplification by 3WM, we use the superconducting
nonlinear asymmetric inductive element (SNAIL) loops, biased with a dc magnetic flux. In addition, we equip the device with dispersion engineering features to create a stop-band at the second harmonic of the pump and suppress the propagation of the higher harmonics that otherwise degrade the amplification. With a chain of 440 SNAILs, the amplifier provides up to 20 dB gain and a 3-dB bandwidth of 1 GHz. The added noise by the amplifier is found to be less than one photon.

Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier

  1. Liangyu Chen,
  2. Hang-Xi Li,
  3. Yong Lu,
  4. Christopher W. Warren,
  5. Christian J. Križan,
  6. Sandoko Kosen,
  7. Marcus Rommel,
  8. Shahnawaz Ahmed,
  9. Amr Osman,
  10. Janka Biznárová,
  11. Anita Fadavi Roudsari,
  12. Benjamin Lienhard,
  13. Marco Caputo,
  14. Kestutis Grigoras,
  15. Leif Grönberg,
  16. Joonas Govenius,
  17. Anton Frisk Kockum,
  18. Per Delsing,
  19. Jonas Bylander,
  20. and Giovanna Tancredi
High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme for
superconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that effectively increases the energy-relaxation time, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout – without using a quantum-limited amplifier.

Extensive characterization of a family of efficient three-qubit gates at the coherence limit

  1. Christopher W. Warren,
  2. Jorge Fernández-Pendás,
  3. Shahnawaz Ahmed,
  4. Tahereh Abad,
  5. Andreas Bengtsson,
  6. Janka Biznárová,
  7. Kamanasish Debnath,
  8. Xiu Gu,
  9. Christian Križan,
  10. Amr Osman,
  11. Anita Fadavi Roudsari,
  12. Per Delsing,
  13. Göran Johansson,
  14. Anton Frisk Kockum,
  15. Giovanna Tancredi,
  16. and Jonas Bylander
While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in the
presence of gate errors, especially those due to decoherence. Using superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a „firmware“ upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family of operations, creating flexibility in quantum-circuit compilation. We demonstrate a gate fidelity of 97.90%, which is near the coherence limit of our device. We then generate two classes of entangled states, the GHZ and W states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical errors on the fidelity of the gates and of the target states.

Measurement and control of a superconducting quantum processor with a fully-integrated radio-frequency system on a chip

  1. Mats O. Tholén,
  2. Riccardo Borgani,
  3. Giuseppe Ruggero Di Carlo,
  4. Andreas Bengtsson,
  5. Christian Križan,
  6. Marina Kudra,
  7. Giovanna Tancredi,
  8. Jonas Bylander,
  9. Per Delsing,
  10. Simone Gasparinetti,
  11. and David B. Haviland
We describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency system
on a chip. Presto uses direct digital synthesis to create signals up to 9 GHz on 16 synchronous output ports, while synchronously analyzing response on 16 input ports. Presto has 16 DC-bias outputs, 4 inputs and 4 outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15 GHz. Scaling to a large number of qubits is enabled through deterministic synchronization of multiple Presto units. A Python application programming interface configures a firmware for synthesis and analysis of pulses, coordinated by an event sequencer. The analysis integrates template matching (matched filtering) and low-latency (184 – 254 ns) feedback to enable a wide range of multi-qubit experiments. We demonstrate Presto’s capabilities with experiments on a sample consisting of two superconducting qubits connected via a flux-tunable coupler. We show single-shot readout and active reset of a single qubit; randomized benchmarking of single-qubit gates showing 99.972% fidelity, limited by the coherence time of the qubit; and calibration of a two-qubit iSWAP gate.

Building Blocks of a Flip-Chip Integrated Superconducting Quantum Processor

  1. Sandoko Kosen,
  2. Hang-Xi Li,
  3. Marcus Rommel,
  4. Daryoush Shiri,
  5. Christopher Warren,
  6. Leif Grönberg,
  7. Jaakko Salonen,
  8. Tahereh Abad,
  9. Janka Biznárová,
  10. Marco Caputo,
  11. Liangyu Chen,
  12. Kestutis Grigoras,
  13. Göran Johansson,
  14. Anton Frisk Kockum,
  15. Christian Križan,
  16. Daniel Pérez Lozano,
  17. Graham Norris,
  18. Amr Osman,
  19. Jorge Fernández-Pendás,
  20. Anita Fadavi Roudsari,
  21. Giovanna Tancredi,
  22. Andreas Wallraff,
  23. Christopher Eichler,
  24. Joonas Govenius,
  25. and Jonas Bylander
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –
that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.

Robust preparation of Wigner-negative states with optimized SNAP-displacement sequences

  1. Marina Kudra,
  2. Mikael Kervinen,
  3. Ingrid Strandberg,
  4. Shahnawaz Ahmed,
  5. Marco Scigliuzzo,
  6. Amr Osman,
  7. Daniel Pérez Lozano,
  8. Giulia Ferrini,
  9. Jonas Bylander,
  10. Anton Frisk Kockum,
  11. Fernando Quijandría,
  12. Per Delsing,
  13. and Simone Gasparinetti
Hosting non-classical states of light in three-dimensional microwave cavities has emerged as a promising paradigm for continuous-variable quantum information processing. Here we experimentally
demonstrate high-fidelity generation of a range of Wigner-negative states useful for quantum computation, such as Schrödinger-cat states, binomial states, Gottesman-Kitaev-Preskill (GKP) states, as well as cubic phase states. The latter states have been long sought after in quantum optics and were never achieved experimentally before. To do so, we use a sequence of interleaved selective number-dependent arbitrary phase (SNAP) gates and displacements. We optimize the state preparation in two steps. First we use a gradient-descent algorithm to optimize the parameters of the SNAP and displacement gates. Then we optimize the envelope of the pulses implementing the SNAP gates. Our results show that this way of creating highly non-classical states in a harmonic oscillator is robust to fluctuations of the system parameters such as the qubit frequency and the dispersive shift.

Quantum efficiency, purity and stability of a tunable, narrowband microwave single-photon source

  1. Yong Lu,
  2. Andreas Bengtsson,
  3. Jonathan J. Burnett,
  4. Baladitya Suri,
  5. Sankar Raman Sathyamoorthy,
  6. Hampus Renberg Nilsson,
  7. Marco Scigliuzzo,
  8. Jonas Bylander,
  9. Göran Johansson,
  10. and Per Delsing
We demonstrate an on-demand source of microwave single photons with 71–99% intrinsic quantum efficiency. The source is narrowband (300unite{kHz}) and tuneable over a 600 MHz
range around 5.2 GHz. Such a device is an important element in numerous quantum technologies and applications. The device consists of a superconducting transmon qubit coupled to the open end of a transmission line. A π-pulse excites the qubit, which subsequently rapidly emits a single photon into the transmission line. A cancellation pulse then suppresses the reflected π-pulse by 33.5 dB, resulting in 0.005 photons leaking into the photon emission channel. We verify strong antibunching of the emitted photon field and determine its Wigner function. Non-radiative decay and 1/f flux noise both affect the quantum efficiency. We also study the device stability over time and identify uncorrelated discrete jumps of the pure dephasing rate at different qubit frequencies on a time scale of hours, which we attribute to independent two-level system defects in the device dielectrics, dispersively coupled to the qubit.

Simplified Josephson-junction fabrication process for reproducibly high-performance superconducting qubits

  1. A. Osman,
  2. J. Simon,
  3. A. Bengtsson,
  4. S. Kosen,
  5. P. Krantz,
  6. D. Perez,
  7. M. Scigliuzzo,
  8. Jonas Bylander,
  9. and A. Fadavi Roudsari
We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with T1 relaxation times averaging above 50 μs (Q>1.5× 106). Current
shadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7% on a wafer that contains forty 0.5×0.5-cm2 chips, with junction areas ranging between 0.01 and 0.16 μm2. The average on-chip spread in resistance is 2.7%, with 20 chips varying between 1.4 and 2%. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5%. We show that 60-70% of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.