Already in the first edition of this book (Barone and Paterno, „Fundamentals and Physics and Applications of the Josephson Effect“, Wiley 1982), a great number of interestingand important applications for Josephson junctions were discussed. In the decades that have passed since then, several new applications have emerged. This chapter treats one such new class of applications: quantum optics and quantum information processing (QIP) based on superconducting circuits with Josephson junctions. In this chapter, we aim to explain the basics of superconducting quantum circuits with Josephson junctions and demonstrate how these systems open up new prospects, both for QIP and for the study of quantum optics and atomic physics.

The ability to entangle quantum systems is crucial for many applications in quantum technology, including quantum communication and quantum computing. Here, we propose a new, simple,and versatile setup for deterministically creating Bell and Greenberger-Horne-Zeilinger (GHZ) states between photons of different frequencies in a two-step protocol. The setup consists of a quantum bit (qubit) coupled ultrastrongly to three photonic resonator modes. The only operations needed in our protocol are to put the qubit in a superposition state, and then tune its frequency in and out of resonance with sums of the resonator-mode frequencies. By choosing which frequency we tune the qubit to, we select which entangled state we create. We show that our protocol can be implemented with high fidelity using feasible experimental parameters in state-of-the-art circuit quantum electrodynamics. One possible application of our setup is as a node distributing entanglement in a quantum network.

In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwavephotons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Herewe propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially-separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analogue of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally-demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear inter-atomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders ofmagnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop.

It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have alsobeen found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this paper, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.