Schrödinger cat states, quantum superpositions of macroscopically distinct classical states, are an important resource for quantum communication, quantum metrology and quantum computation.Especially, cat states in a phase space protected against phase-flip errors can be used as a logical qubit. However, cat states, normally generated in three-dimensional cavities, are facing the challenges of scalability and controllability. Here, we present a novel strategy to generate and store cat states in a coplanar superconducting circuit by the fast modulation of Kerr nonlinearity. At the Kerr-free work point, our cat states are passively preserved due to the vanishing Kerr effect. We are able to prepare a 2-component cat state in our chip-based device with a fidelity reaching 89.1% under a 96 ns gate time. Our scheme shows an excellent route to constructing a chip-based bosonic quantum processor.

We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Nonlinear Asymmetric Inductive eLement). Such a device possesses a sweet spot in which the externalmagnetic flux allows to suppress the Kerr interaction. We have excited photons near this Kerr-free point and characterized the device using a transmon qubit. The excitation spectrum of the qubit allows to observe photon-number-dependent frequency shifts about nine times larger than the qubit linewidth. Our study demonstrates a compact integrated platform for continuous-variable quantum processing that combines large couplings, considerable relaxation times and excellent control over the photon mode structure in the microwave domain.

We report the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-wave mixing (3WM). To favor amplification by 3WM, we use the superconductingnonlinear asymmetric inductive element (SNAIL) loops, biased with a dc magnetic flux. In addition, we equip the device with dispersion engineering features to create a stop-band at the second harmonic of the pump and suppress the propagation of the higher harmonics that otherwise degrade the amplification. With a chain of 440 SNAILs, the amplifier provides up to 20 dB gain and a 3-dB bandwidth of 1 GHz. The added noise by the amplifier is found to be less than one photon.

High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme forsuperconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that effectively increases the energy-relaxation time, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout – without using a quantum-limited amplifier.

While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in thepresence of gate errors, especially those due to decoherence. Using superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a „firmware“ upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family of operations, creating flexibility in quantum-circuit compilation. We demonstrate a gate fidelity of 97.90%, which is near the coherence limit of our device. We then generate two classes of entangled states, the GHZ and W states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical errors on the fidelity of the gates and of the target states.

We describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency systemon a chip. Presto uses direct digital synthesis to create signals up to 9 GHz on 16 synchronous output ports, while synchronously analyzing response on 16 input ports. Presto has 16 DC-bias outputs, 4 inputs and 4 outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15 GHz. Scaling to a large number of qubits is enabled through deterministic synchronization of multiple Presto units. A Python application programming interface configures a firmware for synthesis and analysis of pulses, coordinated by an event sequencer. The analysis integrates template matching (matched filtering) and low-latency (184 – 254 ns) feedback to enable a wide range of multi-qubit experiments. We demonstrate Presto’s capabilities with experiments on a sample consisting of two superconducting qubits connected via a flux-tunable coupler. We show single-shot readout and active reset of a single qubit; randomized benchmarking of single-qubit gates showing 99.972% fidelity, limited by the coherence time of the qubit; and calibration of a two-qubit iSWAP gate.

Hosting non-classical states of light in three-dimensional microwave cavities has emerged as a promising paradigm for continuous-variable quantum information processing. Here we experimentallydemonstrate high-fidelity generation of a range of Wigner-negative states useful for quantum computation, such as Schrödinger-cat states, binomial states, Gottesman-Kitaev-Preskill (GKP) states, as well as cubic phase states. The latter states have been long sought after in quantum optics and were never achieved experimentally before. To do so, we use a sequence of interleaved selective number-dependent arbitrary phase (SNAP) gates and displacements. We optimize the state preparation in two steps. First we use a gradient-descent algorithm to optimize the parameters of the SNAP and displacement gates. Then we optimize the envelope of the pulses implementing the SNAP gates. Our results show that this way of creating highly non-classical states in a harmonic oscillator is robust to fluctuations of the system parameters such as the qubit frequency and the dispersive shift.

We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this observation, we build a two-bathmodel where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 times larger than the cold waveguide, leading to nonequilibrium heat transport with a power of up to 132 zW, as estimated from the qubit emission spectrum. By adding more isolation between the sample output and the first cold amplifier in the output line, the heat transport is strongly suppressed. Our interpretation is that the hot bath may arise from active two-level systems being excited by noise from the output line. We also apply a coherent drive, and use the waveguide to measure thermodynamic work and heat, suggesting waveguide spectroscopy is a useful means to study quantum heat engines and refrigerators. Finally, based on the theoretical model, we propose how a similar setup can be used as a noise spectrometer which provides a new solution for calibrating the background noise of hybrid quantum systems.

We demonstrate an on-demand source of microwave single photons with 71–99% intrinsic quantum efficiency. The source is narrowband (300unite{kHz}) and tuneable over a 600 MHzrange around 5.2 GHz. Such a device is an important element in numerous quantum technologies and applications. The device consists of a superconducting transmon qubit coupled to the open end of a transmission line. A π-pulse excites the qubit, which subsequently rapidly emits a single photon into the transmission line. A cancellation pulse then suppresses the reflected π-pulse by 33.5 dB, resulting in 0.005 photons leaking into the photon emission channel. We verify strong antibunching of the emitted photon field and determine its Wigner function. Non-radiative decay and 1/f flux noise both affect the quantum efficiency. We also study the device stability over time and identify uncorrelated discrete jumps of the pure dephasing rate at different qubit frequencies on a time scale of hours, which we attribute to independent two-level system defects in the device dielectrics, dispersively coupled to the qubit.

We investigate three types of amplification processes for light fields coupling to an atom near the end of a one-dimensional semi-infinite waveguide. We consider two setups where adrive creates population inversion in the bare or dressed basis of a three-level atom and one setup where the amplification is due to higher-order processes in a driven two-level atom. In all cases, the end of the waveguide acts as a mirror for the light. We find that this enhances the amplification in two ways compared to the same setups in an open waveguide. Firstly, the mirror forces all output from the atom to travel in one direction instead of being split up into two output channels. Secondly, interference due to the mirror enables tuning of the ratio of relaxation rates for different transitions in the atom to increase population inversion. We quantify the enhancement in amplification due to these factors and show that it can be demonstrated for standard parameters in experiments with superconducting quantum circuits.