Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier

  1. Liangyu Chen,
  2. Hang-Xi Li,
  3. Yong Lu,
  4. Christopher W. Warren,
  5. Christian J. Križan,
  6. Sandoko Kosen,
  7. Marcus Rommel,
  8. Shahnawaz Ahmed,
  9. Amr Osman,
  10. Janka Biznárová,
  11. Anita Fadavi Roudsari,
  12. Benjamin Lienhard,
  13. Marco Caputo,
  14. Kestutis Grigoras,
  15. Leif Grönberg,
  16. Joonas Govenius,
  17. Anton Frisk Kockum,
  18. Per Delsing,
  19. Jonas Bylander,
  20. and Giovanna Tancredi
High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme for
superconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that effectively increases the energy-relaxation time, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout – without using a quantum-limited amplifier.

Nonequilibrium heat transport and work with a single artificial atom coupled to a waveguide: emission without external driving

  1. Yong Lu,
  2. Neill Lambert,
  3. Anton Frisk Kockum,
  4. Ken Funo,
  5. Andreas Bengtsson,
  6. Simone Gasparinetti,
  7. Franco Nori,
  8. and Per Delsing
We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this observation, we build a two-bath
model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 times larger than the cold waveguide, leading to nonequilibrium heat transport with a power of up to 132 zW, as estimated from the qubit emission spectrum. By adding more isolation between the sample output and the first cold amplifier in the output line, the heat transport is strongly suppressed. Our interpretation is that the hot bath may arise from active two-level systems being excited by noise from the output line. We also apply a coherent drive, and use the waveguide to measure thermodynamic work and heat, suggesting waveguide spectroscopy is a useful means to study quantum heat engines and refrigerators. Finally, based on the theoretical model, we propose how a similar setup can be used as a noise spectrometer which provides a new solution for calibrating the background noise of hybrid quantum systems.

Quantum efficiency, purity and stability of a tunable, narrowband microwave single-photon source

  1. Yong Lu,
  2. Andreas Bengtsson,
  3. Jonathan J. Burnett,
  4. Baladitya Suri,
  5. Sankar Raman Sathyamoorthy,
  6. Hampus Renberg Nilsson,
  7. Marco Scigliuzzo,
  8. Jonas Bylander,
  9. Göran Johansson,
  10. and Per Delsing
We demonstrate an on-demand source of microwave single photons with 71–99% intrinsic quantum efficiency. The source is narrowband (300unite{kHz}) and tuneable over a 600 MHz
range around 5.2 GHz. Such a device is an important element in numerous quantum technologies and applications. The device consists of a superconducting transmon qubit coupled to the open end of a transmission line. A π-pulse excites the qubit, which subsequently rapidly emits a single photon into the transmission line. A cancellation pulse then suppresses the reflected π-pulse by 33.5 dB, resulting in 0.005 photons leaking into the photon emission channel. We verify strong antibunching of the emitted photon field and determine its Wigner function. Non-radiative decay and 1/f flux noise both affect the quantum efficiency. We also study the device stability over time and identify uncorrelated discrete jumps of the pure dephasing rate at different qubit frequencies on a time scale of hours, which we attribute to independent two-level system defects in the device dielectrics, dispersively coupled to the qubit.

Characterizing decoherence rates of a superconducting qubit by direct microwave scattering

  1. Yong Lu,
  2. Andreas Bengtsson,
  3. Jonathan J. Burnett,
  4. Emely Wiegand,
  5. Baladitya Suri,
  6. Philip Krantz,
  7. Anita Fadavi Roudsari,
  8. Anton Frisk Kockum,
  9. Simone Gasparinetti,
  10. Göran Johansson,
  11. and Per Delsing
We experimentally investigate a superconducting qubit coupled to the end of an open transmission line, in a regime where the qubit decay rates to the transmission line and to its own
environment are comparable. We perform measurements of coherent and incoherent scattering, on- and off-resonant fluorescence, and time-resolved dynamics to determine the decay and decoherence rates of the qubit. In particular, these measurements let us discriminate between non-radiative decay and pure dephasing. We combine and contrast results across all methods and find consistent values for the extracted rates. The results show that the pure dephasing rate is one order of magnitude smaller than the non-radiative decay rate for our qubit. Our results indicate a pathway to benchmark decoherence rates of superconducting qubits in a resonator-free setting.