While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in thepresence of gate errors, especially those due to decoherence. Using superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a „firmware“ upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family of operations, creating flexibility in quantum-circuit compilation. We demonstrate a gate fidelity of 97.90%, which is near the coherence limit of our device. We then generate two classes of entangled states, the GHZ and W states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical errors on the fidelity of the gates and of the target states.

Shortcuts to adiabaticity (STA) are powerful quantum control methods, allowing quick evolution into target states of otherwise slow adiabatic dynamics. Such methods have widespreadapplications in quantum technologies, and various STA protocols have been demonstrated in closed systems. However, realizing STA for open quantum systems has presented a greater challenge, due to complex controls required in existing proposals. Here we present the first experimental demonstration of STA for open quantum systems, using a superconducting circuit QED system consisting of two coupled bosonic oscillators and a transmon qubit. By applying a counterdiabatic driving pulse, we reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns. In addition, we propose and implement an optimal control protocol to achieve fast and qubit-unconditional equilibrium of multiple lossy modes. Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols of physical and interdisciplinary interest, such as accelerating bioengineering and chemical reaction dynamics.

Qubit initialization is critical for many quantum algorithms and error correction schemes, and extensive efforts have been made to achieve this with high speed and efficiency. Herewe experimentally demonstrate a fast and high fidelity reset scheme for tunable superconducting qubits. A rapid decay channel is constructed by modulating the flux through a transmon qubit and realizing a swap between the qubit and its readout resonator. The residual excited population can be suppressed to 0.08% ± 0.08% within 34 ns, and the scheme requires no additional chip architecture, projective measurements, or feedback loops. In addition, the scheme has negligible effects on neighboring qubits, and is therefore suitable for large-scale multi-qubit systems. Our method also offers a way of entangling the qubit state with an itinerant single photon, particularly useful in quantum communication and quantum network applications.

Present-day, noisy, small or intermediate-scale quantum processors—although far from fault-tolerant—support the execution of heuristic quantum algorithms, which might enablea quantum advantage, for example, when applied to combinatorial optimization problems. On small-scale quantum processors, validations of such algorithms serve as important technology demonstrators. We implement the quantum approximate optimization algorithm (QAOA) on our hardware platform, consisting of two transmon qubits and one parametrically modulated coupler. We solve small instances of the NP-complete exact-cover problem, with 96.6\% success probability, by iterating the algorithm up to level two.

Topological insulators have inspired the study with various quantum simulators. Exploiting the tunability of the qubit frequency and qubit-qubit coupling, we show that a superconductingqubit chain can simulate various topological band models. When the system is restricted to the single-spin excitation subspace, the Su-Schrieffer-Heeger (SSH) model can be equivalently simulated by alternating the coupling strength between neighboring qubits. The existence of topological edge states in this qubit chain is demonstrated in the quench dynamics after the first qubit is excited. This excitation propagates along the chain where the qubit-qubit coupling is homogeneous. In contrast, in our qubit chain, the spin-up state localizes at the first qubit and the rest qubits remain in the spin-down state. We further show that the spin-up state can be transported along the chain by modulating the coupling strengths and the qubit frequencies. This demonstrates adiabatic pumping based on the Rice-Mele model. Moreover, we also discuss possible ways to construct other topological models with different topological phenomena within the current technology of superconducting qubits.

In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwavephotons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

Electromagnetically induced transparency (EIT) has been extensively studied in various systems. However, it is not easy to observe in superconducting quantum circuits (SQCs), becausethe Rabi frequency of the strong controlling field corresponding to EIT is limited by the decay rates of the SQCs. Here, we show that EIT can be achieved by engineering decay rates in a superconducting circuit QED system through a classical driving field on the qubit. Without such a driving field, the superconducting qubit and the cavity field are approximately decoupled in the large detuning regime, and thus the eigenstates of the system are approximately product states of the cavity field and qubit states. However, the driving field can strongly mix these product states and so-called polariton states can be formed. The weights of the states for the qubit and cavity field in the polariton states can be tuned by the driving field, and thus the decay rates of the polariton states can be changed. We choose a three-level system with Λ-type transitions in such a driven circuit QED system, and demonstrate how EIT and ATS can be realized in this compound system. We believe that this study will be helpful for EIT experiments using SQCs.