Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier

  1. Liangyu Chen,
  2. Hang-Xi Li,
  3. Yong Lu,
  4. Christopher W. Warren,
  5. Christian J. Križan,
  6. Sandoko Kosen,
  7. Marcus Rommel,
  8. Shahnawaz Ahmed,
  9. Amr Osman,
  10. Janka Biznárová,
  11. Anita Fadavi Roudsari,
  12. Benjamin Lienhard,
  13. Marco Caputo,
  14. Kestutis Grigoras,
  15. Leif Grönberg,
  16. Joonas Govenius,
  17. Anton Frisk Kockum,
  18. Per Delsing,
  19. Jonas Bylander,
  20. and Giovanna Tancredi
High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme for
superconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that effectively increases the energy-relaxation time, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout – without using a quantum-limited amplifier.

Extensive characterization of a family of efficient three-qubit gates at the coherence limit

  1. Christopher W. Warren,
  2. Jorge Fernández-Pendás,
  3. Shahnawaz Ahmed,
  4. Tahereh Abad,
  5. Andreas Bengtsson,
  6. Janka Biznárová,
  7. Kamanasish Debnath,
  8. Xiu Gu,
  9. Christian Križan,
  10. Amr Osman,
  11. Anita Fadavi Roudsari,
  12. Per Delsing,
  13. Göran Johansson,
  14. Anton Frisk Kockum,
  15. Giovanna Tancredi,
  16. and Jonas Bylander
While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in the
presence of gate errors, especially those due to decoherence. Using superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a „firmware“ upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family of operations, creating flexibility in quantum-circuit compilation. We demonstrate a gate fidelity of 97.90%, which is near the coherence limit of our device. We then generate two classes of entangled states, the GHZ and W states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical errors on the fidelity of the gates and of the target states.

Engineering symmetry-selective couplings of a superconducting artificial molecule to microwave waveguides

  1. Mohammed Ali Aamir,
  2. Claudia Castillo Moreno,
  3. Simon Sundelin,
  4. Janka Biznárová,
  5. Marco Scigliuzzo,
  6. Kowshik Erappaji Patel,
  7. Amr Osman,
  8. D. P. Lozano,
  9. and Simone Gasparinetti
Tailoring the decay rate of structured quantum emitters into their environment opens new avenues for nonlinear quantum optics, collective phenomena, and quantum communications. Here
we demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits, and two microwave waveguides. In our scheme, the coupling is engineered so that transitions between states of the same (opposite) symmetry, with respect to the permutation operator, are predominantly coupled to one (the other) waveguide. The symmetry-based coupling selectivity, as quantified by the ratio of the coupling strengths, exceeds a factor of 30 for both the waveguides in our device. In addition, we implement a two-photon Raman process activated by simultaneously driving both waveguides, and show that it can be used to coherently couple states of different symmetry in the single-excitation manifold of the molecule. Using that process, we implement frequency conversion across the waveguides, mediated by the molecule, with efficiency of about 95%. Finally, we show that this coupling arrangement makes it possible to straightforwardly generate spatially-separated Bell states propagating across the waveguides. We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.

Building Blocks of a Flip-Chip Integrated Superconducting Quantum Processor

  1. Sandoko Kosen,
  2. Hang-Xi Li,
  3. Marcus Rommel,
  4. Daryoush Shiri,
  5. Christopher Warren,
  6. Leif Grönberg,
  7. Jaakko Salonen,
  8. Tahereh Abad,
  9. Janka Biznárová,
  10. Marco Caputo,
  11. Liangyu Chen,
  12. Kestutis Grigoras,
  13. Göran Johansson,
  14. Anton Frisk Kockum,
  15. Christian Križan,
  16. Daniel Pérez Lozano,
  17. Graham Norris,
  18. Amr Osman,
  19. Jorge Fernández-Pendás,
  20. Anita Fadavi Roudsari,
  21. Giovanna Tancredi,
  22. Andreas Wallraff,
  23. Christopher Eichler,
  24. Joonas Govenius,
  25. and Jonas Bylander
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –
that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.