The ability to execute high-fidelity operations is crucial to scaling up quantum devices to large numbers of qubits. However, signal distortions originating from non-linear componentsin the control lines can limit the performance of single-qubit gates. In this work, we use a measurement based on error amplification to characterize and correct the small single-qubit rotation errors originating from the non-linear scaling of the qubit drive rate with the amplitude of the programmed pulse. With our hardware, and for a 15-ns pulse, the rotation angles deviate by up to several degrees from a linear model. Using purity benchmarking, we find that control errors reach 2×10−4, which accounts for half of the total gate error. Using cross-entropy benchmarking, we demonstrate arbitrary-angle single-qubit gates with coherence-limited errors of 2×10−4 and leakage below 6×10−5. While the exact magnitude of these errors is specific to our setup, the presented method is applicable to any source of non-linearity. Our work shows that the non-linearity of qubit drive line components imposes a limit on the fidelity of single-qubit gates, independent of improvements in coherence times, circuit design, or leakage mitigation when not corrected for.

Josephson traveling wave parametric amplifiers enable the amplification of weak microwave signals close to the quantum limit with large bandwidth, which has a broad range of applicationsin superconducting quantum computing and in the operation of single-photon detectors. While the large bandwidth allows for their use in frequency-multiplexed detection architectures, an increased number of readout tones per amplifier puts more stringent requirements on the dynamic range to avoid saturation. Here, we characterize the undesired mixing processes between the different frequency-multiplexed tones applied to a Josephson traveling wave parametric amplifier, a phenomenon also known as intermodulation distortion. The effect becomes particularly significant when the amplifier is operated close to its saturation power. Furthermore, we demonstrate that intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits. We suggest using large detunings between the pump and signal frequencies to mitigate crosstalk. Our work provides insights into the limitations of current Josephson traveling wave parametric amplifiers and highlights the importance of performing further research on these devices.

Quantum computers hold the promise of solving computational problems which are intractable using conventional methods. For fault-tolerant operation quantum computers must correct errorsoccurring due to unavoidable decoherence and limited control accuracy. Here, we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors. Using 17 physical qubits in a superconducting circuit we encode quantum information in a distance-three logical qubit building up on recent distance-two error detection experiments. In an error correction cycle taking only 1.1μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit- and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in postprocessing. We find a low error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error correction cycles, together with recent advances in ion traps, support our understanding that fault-tolerant quantum computation will be practically realizable.

We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.

Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through directmeasurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.

Deterministic photon-photon gates enable the controlled generation of entanglement between mobile carriers of quantum information. Such gates have thus far been exclusively realizedin the optical domain and by relying on post-selection. Here, we present a non-post-selected, deterministic, photon-photon gate in the microwave frequency range realized using superconducting circuits. We emit photonic qubits from a source chip and route those qubits to a gate chip with which we realize a universal gate set by combining controlled absorption and re-emission with single-qubit gates and qubit-photon controlled-phase gates. We measure quantum process fidelities of 75% for single- and of 57% for two-qubit gates, limited mainly by radiation loss and decoherence. This universal gate set has a wide range of potential applications in superconducting quantum networks.

High fidelity two-qubit gates exhibiting low crosstalk are essential building blocks for gate-based quantum information processing. In superconducting circuits two-qubit gates are typicallybased either on RF-controlled interactions or on the in-situ tunability of qubit frequencies. Here, we present an alternative approach using a tunable cross-Kerr-type ZZ-interaction between two qubits, which we realize by a flux-tunable coupler element. We control the ZZ-coupling rate over three orders of magnitude to perform a rapid (38 ns), high-contrast, low leakage (0.14 %) conditional-phase CZ gate with a fidelity of 97.9 % without relying on the resonant interaction with a non-computational state. Furthermore, by exploiting the direct nature of the ZZ-coupling, we easily access the entire conditional-phase gate family by adjusting only a single control parameter.

Sources of entangled electromagnetic radiation are a cornerstone in quantum information processing and offer unique opportunities for the study of quantum many-body physics in a controlledexperimental setting. While multi-mode entangled states of radiation have been generated in various platforms, all previous experiments are either probabilistic or restricted to generate specific types of states with a moderate entanglement length. Here, we demonstrate the fully deterministic generation of purely photonic entangled states such as the cluster, GHZ, and W state by sequentially emitting microwave photons from a controlled auxiliary system into a waveguide. We tomographically reconstruct the entire quantum many-body state for up to N=4 photonic modes and infer the quantum state for even larger N from process tomography. We estimate that localizable entanglement persists over a distance of approximately ten photonic qubits, outperforming any previous deterministic scheme.

Variational quantum algorithms are believed to be promising for solving computationally hard problems and are often comprised of repeated layers of quantum gates. An example thereofis the quantum approximate optimization algorithm (QAOA), an approach to solve combinatorial optimization problems on noisy intermediate-scale quantum (NISQ) systems. Gaining computational power from QAOA critically relies on the mitigation of errors during the execution of the algorithm, which for coherence-limited operations is achievable by reducing the gate count. Here, we demonstrate an improvement of up to a factor of 3 in algorithmic performance as measured by the success probability, by implementing a continuous hardware-efficient gate set using superconducting quantum circuits. This gate set allows us to perform the phase separation step in QAOA with a single physical gate for each pair of qubits instead of decomposing it into two CZ-gates and single-qubit gates. With this reduced number of physical gates, which scales with the number of layers employed in the algorithm, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances mapped onto three and seven qubits, using up to a total of 399 operations and up to 9 layers. Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.

The parity of the number of elementary excitations present in a quantum system provides important insights into its physical properties. Parity measurements are used, for example, totomographically reconstruct quantum states or to determine if a decay of an excitation has occurred, information which can be used for quantum error correction in computation or communication protocols. Here we demonstrate a versatile parity detector for propagating microwaves, which distinguishes between radiation fields containing an even or odd number n of photons, both in a single-shot measurement and without perturbing the parity of the detected field. We showcase applications of the detector for direct Wigner tomography of propagating microwaves and heralded generation of Schrödinger cat states. This parity detection scheme is applicable over a broad frequency range and may prove useful, for example, for heralded or fault-tolerant quantum communication protocols.