Multidimensional cluster states are a key resource for robust quantum communication, measurement-based quantum computing and quantum metrology. Here, we present a device capable ofemitting large-scale entangled microwave photonic states in a two dimensional ladder structure. The device consists of a pair of coupled superconducting transmon qubits which are each tuneably coupled to a common output waveguide. This architecture permits entanglement between each transmon and a deterministically emitted photonic qubit. By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons. We measure a signature of localizable entanglement across up to 20 photonic qubits. We expect the device architecture to be capable of generating a wide range of other tensor network states such as tree graph states, repeater states or the ground state of the toric code, and to be readily scalable to generate larger and higher dimensional states.

The dominant contribution to the energy relaxation of state-of-the-art superconducting qubits is often attributed to their coupling to an ensemble of material defects which behave astwo-level systems. These defects have varying microscopic characteristics which result in a large range of observable defect properties such as resonant frequencies, coherence times and coupling rates to qubits g. Here, we investigate strategies to mitigate losses to the family of defects that strongly couple to qubits (g/2π≥ 0.5 MHz). Such strongly coupled defects are particularly detrimental to the coherence of qubits and to the fidelities of operations relying on frequency excursions, such as flux-activated two-qubit gates. To assess their impact, we perform swap spectroscopy on 92 frequency-tunable qubits and quantify the spectral density of these strongly coupled modes. We show that the frequency configuration of the defects is rearranged by warming up the sample to room temperature, whereas the total number of defects on a processor tends to remain constant. We then explore methods for fabricating qubits with a reduced number of strongly coupled defect modes by systematically measuring their spectral density for decreasing Josephson junction dimensions and for various surface cleaning methods. Our results provide insights into the properties of strongly coupled defect modes and show the benefits of minimizing Josephson junction dimensions to improve qubit properties.

Three-dimensional device integration facilitates the construction of superconducting quantum information processors with more than several tens of qubits by distributing elements suchas control wires, qubits, and resonators between multiple layers. The frequencies of resonators and qubits in flip-chip-bonded multi-chip modules depend on the details of their electromagnetic environment defined by the conductors and dielectrics in their vicinity. Accurate frequency targeting therefore requires precise control of the separation between chips and minimization of their relative tilt. Here, we describe a method to control the inter-chip separation by using polymer spacers. Compared to an identical process without spacers, we reduce the measured planarity error by a factor of 3.5, to a mean tilt of 76(35) μrad, and the deviation from the target inter-chip separation by a factor of ten, to a mean of 0.4(8) μm. We apply this process to coplanar waveguide resonator samples and observe chip-to-chip resonator frequency variations below 50 MHz (≈ 1 %). We measure internal quality factors of 5×105 at the single-photon level, suggesting that the added spacers are compatible with low-loss device fabrication.

Enhancing the capabilities of superconducting quantum hardware, requires higher gate fidelities and lower crosstalk, particularly in larger scale devices, in which qubits are coupledto multiple neighbors. Progress towards both of these objectives would highly benefit from the ability to fully control all interactions between pairs of qubits. Here we propose a new coupler model that allows to fully decouple dispersively detuned Transmon qubits from each other, i.e. ZZ-crosstalk is completely suppressed while maintaining a maximal localization of the qubits‘ computational basis states. We further reason that, for a dispersively detuned Transmon system, this can only be the case if the anharmonicity of the coupler is positive at the idling point. A simulation of a 40ns CZ-gate for a lumped element model suggests that achievable process infidelity can be pushed below the limit imposed by state-of-the-art coherence times of Transmon qubits. On the other hand, idle gates between qubits are no longer limited by parasitic interactions. We show that our scheme can be applied to large integrated qubit grids, where it allows to fully isolate a pair of qubits, that undergoes a gate operation, from the rest of the chip while simultaneously pushing the fidelity of gates to the limit set by the coherence time of the individual qubits.

The ability to execute high-fidelity operations is crucial to scaling up quantum devices to large numbers of qubits. However, signal distortions originating from non-linear componentsin the control lines can limit the performance of single-qubit gates. In this work, we use a measurement based on error amplification to characterize and correct the small single-qubit rotation errors originating from the non-linear scaling of the qubit drive rate with the amplitude of the programmed pulse. With our hardware, and for a 15-ns pulse, the rotation angles deviate by up to several degrees from a linear model. Using purity benchmarking, we find that control errors reach 2×10−4, which accounts for half of the total gate error. Using cross-entropy benchmarking, we demonstrate arbitrary-angle single-qubit gates with coherence-limited errors of 2×10−4 and leakage below 6×10−5. While the exact magnitude of these errors is specific to our setup, the presented method is applicable to any source of non-linearity. Our work shows that the non-linearity of qubit drive line components imposes a limit on the fidelity of single-qubit gates, independent of improvements in coherence times, circuit design, or leakage mitigation when not corrected for.

Josephson traveling wave parametric amplifiers enable the amplification of weak microwave signals close to the quantum limit with large bandwidth, which has a broad range of applicationsin superconducting quantum computing and in the operation of single-photon detectors. While the large bandwidth allows for their use in frequency-multiplexed detection architectures, an increased number of readout tones per amplifier puts more stringent requirements on the dynamic range to avoid saturation. Here, we characterize the undesired mixing processes between the different frequency-multiplexed tones applied to a Josephson traveling wave parametric amplifier, a phenomenon also known as intermodulation distortion. The effect becomes particularly significant when the amplifier is operated close to its saturation power. Furthermore, we demonstrate that intermodulation distortion can lead to significant crosstalk and reduction of fidelity for multiplexed readout of superconducting qubits. We suggest using large detunings between the pump and signal frequencies to mitigate crosstalk. Our work provides insights into the limitations of current Josephson traveling wave parametric amplifiers and highlights the importance of performing further research on these devices.

Quantum computers hold the promise of solving computational problems which are intractable using conventional methods. For fault-tolerant operation quantum computers must correct errorsoccurring due to unavoidable decoherence and limited control accuracy. Here, we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors. Using 17 physical qubits in a superconducting circuit we encode quantum information in a distance-three logical qubit building up on recent distance-two error detection experiments. In an error correction cycle taking only 1.1μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit- and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in postprocessing. We find a low error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error correction cycles, together with recent advances in ion traps, support our understanding that fault-tolerant quantum computation will be practically realizable.

We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.

Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through directmeasurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.

Deterministic photon-photon gates enable the controlled generation of entanglement between mobile carriers of quantum information. Such gates have thus far been exclusively realizedin the optical domain and by relying on post-selection. Here, we present a non-post-selected, deterministic, photon-photon gate in the microwave frequency range realized using superconducting circuits. We emit photonic qubits from a source chip and route those qubits to a gate chip with which we realize a universal gate set by combining controlled absorption and re-emission with single-qubit gates and qubit-photon controlled-phase gates. We measure quantum process fidelities of 75% for single- and of 57% for two-qubit gates, limited mainly by radiation loss and decoherence. This universal gate set has a wide range of potential applications in superconducting quantum networks.