Single microwave-photon detector using an artificial Λ-type three-level system

  1. Kunihiro Inomata,
  2. Zhirong Lin,
  3. Kazuki Koshino,
  4. William D. Oliver,
  5. Jaw-Shen Tsai,
  6. Tsuyoshi Yamamoto,
  7. and Yasunobu Nakamura
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five
orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an „impedance-matched“ artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of 0.66±0.06 with a reset time of ∼400~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions

  1. Fumiki Yoshihara,
  2. Yasunobu Nakamura,
  3. Fei Yan,
  4. Simon Gustavsson,
  5. Jonas Bylander,
  6. William D. Oliver,
  7. and Jaw-Shen Tsai
We infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of
the qubit and its strong inductive coupling to a microwave line enabled high-amplitude driving without causing significant additional decoherence. Rabi frequencies up to 1.7 GHz were achieved, approaching the qubit’s level splitting of 4.8 GHz, a regime where the rotating-wave approximation breaks down as a model for the driven dynamics. The spectral density of flux noise observed in the wide frequency range decreases with increasing frequency up to 300 MHz, where the spectral density is not very far from the extrapolation of the 1/f spectrum obtained from the free-induction-decay measurements. We discuss a possible origin of the flux noise due to surface electron spins.