Direct detection of quasiparticle tunneling with a charge-sensitive superconducting sensor coupled to a waveguide

  1. Kazi Rafsanjani Amin,
  2. Axel M. Eriksson,
  3. Mikael Kervinen,
  4. Linus Andersson,
  5. Robert Rehammar,
  6. and Simone Gasparinetti
Detecting quasiparticle tunneling events in superconducting circuits provides information about the population and dynamics of non-equilibrium quasiparticles. Such events can be detected
by monitoring changes in the frequency of an offset-charge-sensitive superconducting qubit. This monitoring has so far been performed by Ramsey interferometry assisted by a readout resonator. Here, we demonstrate a quasiparticle detector based on a superconducting qubit directly coupled to a waveguide. We directly measure quasiparticle number parity on the qubit island by probing the coherent scattering of a microwave tone, offering simplicity of operation, fast detection speed, and a large signal-to-noise ratio. We observe tunneling rates between 0.8 and 7 s−1, depending on the average occupation of the detector qubit, and achieve a temporal resolution below 10 μs without a quantum-limited amplifier. Our simple and efficient detector lowers the barrier to perform studies of quasiparticle population and dynamics, facilitating progress in fundamental science, quantum information processing, and sensing.

Signal crosstalk in a flip-chip quantum processor

  1. Sandoko Kosen,
  2. Hang-Xi Li,
  3. Marcus Rommel,
  4. Robert Rehammar,
  5. Marco Caputo,
  6. Leif Grönberg,
  7. Jorge Fernández-Pendás,
  8. Anton Frisk Kockum,
  9. Janka Biznárová,
  10. Liangyu Chen,
  11. Christian Križan,
  12. Andreas Nylander,
  13. Amr Osman,
  14. Anita Fadavi Roudsari,
  15. Daryoush Shiri,
  16. Giovanna Tancredi,
  17. Joonas Govenius,
  18. and Jonas Bylander
Quantum processors require a signal-delivery architecture with high addressability (low crosstalk) to ensure high performance already at the scale of dozens of qubits. Signal crosstalk
causes inadvertent driving of quantum gates, which will adversely affect quantum-gate fidelities in scaled-up devices. Here, we demonstrate packaged flip-chip superconducting quantum processors with signal-crosstalk performance competitive with those reported in other platforms. For capacitively coupled qubit-drive lines, we find on-resonant crosstalk better than -27 dB (average -37 dB). For inductively coupled magnetic-flux-drive lines, we find less than 0.13 % direct-current flux crosstalk (average 0.05 %). These observed crosstalk levels are adequately small and indicate a decreasing trend with increasing distance, which is promising for further scaling up to larger numbers of qubits. We discuss the implication of our results for the design of a low-crosstalk, on-chip signal delivery architecture, including the influence of a shielding tunnel structure, potential sources of crosstalk, and estimation of crosstalk-induced qubit-gate error in scaled-up quantum processors.

Embedding networks for ideal performance of a travelling-wave parametric amplifier

  1. Hampus Renberg Nilsson,
  2. Daryoush Shiri,
  3. Robert Rehammar,
  4. Anita Fadavi Roudsari,
  5. and Per Delsing
We investigate the required embedding networks to enable ideal performance for a high-gain travelling-wave parametric amplifier (TWPA) based on three-wave mixing (3WM). By embedding
the TWPA in a network of superconducting diplexers and hybrid couplers, the amplifier can deliver a high stable gain with near-quantum-limited noise performance, with suppressed gain ripples, while eliminating the reflections of the signal, the idler and the pump as well as the transmission of all unwanted tones. We demonstrate a configuration where the amplifier can isolate. We call this technique Wideband Idler Filtering (WIF). The theory is supported by simulations that predict over 20 dB gain in the band 4-8 GHz with 10 dB isolation for a single amplifier and 30 dB isolation for two cascaded amplifiers. We demonstrate how the WIF-TWPAs can be used to construct switchable isolators with over 40 dB isolation over the full band 4-8 GHz. We also propose an alternative design where the WIF can be implemented without diplexers. Finally we show how, with small modifications, the technique can be implemented for four-wave mixing (4WM) TWPAs as well.