We describe a digital microwave platform called Presto, designed for measurement and control of multiple quantum bits (qubits) and based on the third-generation radio-frequency systemon a chip. Presto uses direct digital synthesis to create signals up to 9 GHz on 16 synchronous output ports, while synchronously analyzing response on 16 input ports. Presto has 16 DC-bias outputs, 4 inputs and 4 outputs for digital triggers or markers, and two continuous-wave outputs for synthesizing frequencies up to 15 GHz. Scaling to a large number of qubits is enabled through deterministic synchronization of multiple Presto units. A Python application programming interface configures a firmware for synthesis and analysis of pulses, coordinated by an event sequencer. The analysis integrates template matching (matched filtering) and low-latency (184 – 254 ns) feedback to enable a wide range of multi-qubit experiments. We demonstrate Presto’s capabilities with experiments on a sample consisting of two superconducting qubits connected via a flux-tunable coupler. We show single-shot readout and active reset of a single qubit; randomized benchmarking of single-qubit gates showing 99.972% fidelity, limited by the coherence time of the qubit; and calibration of a two-qubit iSWAP gate.
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.
Hosting non-classical states of light in three-dimensional microwave cavities has emerged as a promising paradigm for continuous-variable quantum information processing. Here we experimentallydemonstrate high-fidelity generation of a range of Wigner-negative states useful for quantum computation, such as Schrödinger-cat states, binomial states, Gottesman-Kitaev-Preskill (GKP) states, as well as cubic phase states. The latter states have been long sought after in quantum optics and were never achieved experimentally before. To do so, we use a sequence of interleaved selective number-dependent arbitrary phase (SNAP) gates and displacements. We optimize the state preparation in two steps. First we use a gradient-descent algorithm to optimize the parameters of the SNAP and displacement gates. Then we optimize the envelope of the pulses implementing the SNAP gates. Our results show that this way of creating highly non-classical states in a harmonic oscillator is robust to fluctuations of the system parameters such as the qubit frequency and the dispersive shift.
We demonstrate an on-demand source of microwave single photons with 71–99% intrinsic quantum efficiency. The source is narrowband (300unite{kHz}) and tuneable over a 600 MHzrange around 5.2 GHz. Such a device is an important element in numerous quantum technologies and applications. The device consists of a superconducting transmon qubit coupled to the open end of a transmission line. A π-pulse excites the qubit, which subsequently rapidly emits a single photon into the transmission line. A cancellation pulse then suppresses the reflected π-pulse by 33.5 dB, resulting in 0.005 photons leaking into the photon emission channel. We verify strong antibunching of the emitted photon field and determine its Wigner function. Non-radiative decay and 1/f flux noise both affect the quantum efficiency. We also study the device stability over time and identify uncorrelated discrete jumps of the pure dephasing rate at different qubit frequencies on a time scale of hours, which we attribute to independent two-level system defects in the device dielectrics, dispersively coupled to the qubit.
We introduce a simplified fabrication technique for Josephson junctions and demonstrate superconducting Xmon qubits with T1 relaxation times averaging above 50 μs (Q>1.5× 106). Currentshadow-evaporation techniques for aluminum-based Josephson junctions require a separate lithography step to deposit a patch that makes a galvanic, superconducting connection between the junction electrodes and the circuit wiring layer. The patch connection eliminates parasitic junctions, which otherwise contribute significantly to dielectric loss. In our patch-integrated cross-type (PICT) junction technique, we use one lithography step and one vacuum cycle to evaporate both the junction electrodes and the patch. In a study of more than 3600 junctions, we show an average resistance variation of 3.7% on a wafer that contains forty 0.5×0.5-cm2 chips, with junction areas ranging between 0.01 and 0.16 μm2. The average on-chip spread in resistance is 2.7%, with 20 chips varying between 1.4 and 2%. For the junction sizes used for transmon qubits, we deduce a wafer-level transition-frequency variation of 1.7-2.5%. We show that 60-70% of this variation is attributed to junction-area fluctuations, while the rest is caused by tunnel-junction inhomogeneity. Such high frequency predictability is a requirement for scaling-up the number of qubits in a quantum computer.
Frequency instability of superconducting resonators and qubits leads to dephasing and time-varying energy-loss and hinders quantum-processor tune-up. Its main source is dielectric noiseoriginating in surface oxides. Thorough noise studies are needed in order to develop a comprehensive understanding and mitigation strategy of these fluctuations. Here we use a frequency-locked loop to track the resonant-frequency jitter of three different resonator types—one niobium-nitride superinductor, one aluminium coplanar waveguide, and one aluminium cavity—and we observe strikingly similar random-telegraph-signal fluctuations. At low microwave drive power, the resonators exhibit multiple, unstable frequency positions, which for increasing power coalesce into one frequency due to motional narrowing caused by sympathetic driving of individual two-level-system defects by the resonator. In all three devices we probe a dominant fluctuator, finding that its amplitude saturates with increasing drive power, but its characteristic switching rate follows the power-law dependence of quasiclassical Landau-Zener transitions.
Present-day, noisy, small or intermediate-scale quantum processors—although far from fault-tolerant—support the execution of heuristic quantum algorithms, which might enablea quantum advantage, for example, when applied to combinatorial optimization problems. On small-scale quantum processors, validations of such algorithms serve as important technology demonstrators. We implement the quantum approximate optimization algorithm (QAOA) on our hardware platform, consisting of two transmon qubits and one parametrically modulated coupler. We solve small instances of the NP-complete exact-cover problem, with 96.6\% success probability, by iterating the algorithm up to level two.
We perform an experimental and numerical study of dielectric loss in superconducting microwave resonators at low temperature. Dielectric loss, due to two-level systems, is a limitingfactor in several applications, e.g. superconducting qubits, Josephson parametric amplifiers, microwave kinetic-inductance detectors, and superconducting single-photon detectors. Our devices are made of disordered NbN, which, due to magnetic-field penetration, necessitates 3D finite-element simulation of the Maxwell–London equations at microwave frequencies to accurately model the current density and electric field distribution. From the field distribution, we compute the geometric filling factors of the lossy regions in our resonator structures and fit the experimental data to determine the intrinsic loss tangents of its interfaces and dielectrics. We emphasise that the loss caused by a spin-on-glass resist such as hydrogen silsesquioxane (HSQ), used for ultrahigh lithographic resolution relevant to the fabrication of nanowires, and find that, when used, HSQ is the dominant source of loss, with a loss tangent of δiHSQ=8×10−3.
We benchmark the decoherence of superconducting qubits to examine the temporal stability of energy-relaxation and dephasing. By collecting statistics during measurements spanning multipledays, we find the mean parameters T1 = 49 μs and T∗2= 95 μs, however, both of these quantities fluctuate explaining the need for frequent re-calibration in qubit setups. Our main finding is that fluctuations in qubit relaxation are local to the qubit and are caused by instabilities of near-resonant two-level-systems (TLS). Through statistical analysis, we determine switching rates of these TLS and observe the coherent coupling between an individual TLS and a transmon qubit. Finally, we find evidence that the qubit’s frequency stability is limited by capacitance noise. Importantly, this produces a 0.8 ms limit on the pure dephasing which we also observe. Collectively, these findings raise the need for performing qubit metrology to examine the reproducibility of qubit parameters, where these fluctuations could affect qubit gate fidelity.
We report on the experimental observation of period multiplication in parametrically driven tunable superconducting resonators. We modulate the magnetic flux through a superconductingquantum interference device, attached to a quarter-wavelength resonator, with frequencies nω close to multiples, n=2,3,4,5, of the resonator fundamental mode and observe intense output radiation at ω. The output field manifests n-fold degeneracy with respect to the phase, the n states are phase shifted by 2π/n with respect to each other. Our demonstration verifies the theoretical prediction by Guo et al. in PRL 111, 205303 (2013), and paves the way for engineering complex macroscopic quantum cat states with microwave photons.