Direct detection of quasiparticle tunneling with a charge-sensitive superconducting sensor coupled to a waveguide

  1. Kazi Rafsanjani Amin,
  2. Axel M. Eriksson,
  3. Mikael Kervinen,
  4. Linus Andersson,
  5. Robert Rehammar,
  6. and Simone Gasparinetti
Detecting quasiparticle tunneling events in superconducting circuits provides information about the population and dynamics of non-equilibrium quasiparticles. Such events can be detected
by monitoring changes in the frequency of an offset-charge-sensitive superconducting qubit. This monitoring has so far been performed by Ramsey interferometry assisted by a readout resonator. Here, we demonstrate a quasiparticle detector based on a superconducting qubit directly coupled to a waveguide. We directly measure quasiparticle number parity on the qubit island by probing the coherent scattering of a microwave tone, offering simplicity of operation, fast detection speed, and a large signal-to-noise ratio. We observe tunneling rates between 0.8 and 7 s−1, depending on the average occupation of the detector qubit, and achieve a temporal resolution below 10 μs without a quantum-limited amplifier. Our simple and efficient detector lowers the barrier to perform studies of quasiparticle population and dynamics, facilitating progress in fundamental science, quantum information processing, and sensing.

Robust preparation of Wigner-negative states with optimized SNAP-displacement sequences

  1. Marina Kudra,
  2. Mikael Kervinen,
  3. Ingrid Strandberg,
  4. Shahnawaz Ahmed,
  5. Marco Scigliuzzo,
  6. Amr Osman,
  7. Daniel Pérez Lozano,
  8. Giulia Ferrini,
  9. Jonas Bylander,
  10. Anton Frisk Kockum,
  11. Fernando Quijandría,
  12. Per Delsing,
  13. and Simone Gasparinetti
Hosting non-classical states of light in three-dimensional microwave cavities has emerged as a promising paradigm for continuous-variable quantum information processing. Here we experimentally
demonstrate high-fidelity generation of a range of Wigner-negative states useful for quantum computation, such as Schrödinger-cat states, binomial states, Gottesman-Kitaev-Preskill (GKP) states, as well as cubic phase states. The latter states have been long sought after in quantum optics and were never achieved experimentally before. To do so, we use a sequence of interleaved selective number-dependent arbitrary phase (SNAP) gates and displacements. We optimize the state preparation in two steps. First we use a gradient-descent algorithm to optimize the parameters of the SNAP and displacement gates. Then we optimize the envelope of the pulses implementing the SNAP gates. Our results show that this way of creating highly non-classical states in a harmonic oscillator is robust to fluctuations of the system parameters such as the qubit frequency and the dispersive shift.