Nonequilibrium heat transport and work with a single artificial atom coupled to a waveguide: emission without external driving

  1. Yong Lu,
  2. Neill Lambert,
  3. Anton Frisk Kockum,
  4. Ken Funo,
  5. Andreas Bengtsson,
  6. Simone Gasparinetti,
  7. Franco Nori,
  8. and Per Delsing
We observe the continuous emission of photons into a waveguide from a superconducting qubit without the application of an external drive. To explain this observation, we build a two-bath
model where the qubit couples simultaneously to a cold bath (the waveguide) and a hot bath (a secondary environment). Our results show that the thermal-photon occupation of the hot bath is up to 0.14 photons, 35 times larger than the cold waveguide, leading to nonequilibrium heat transport with a power of up to 132 zW, as estimated from the qubit emission spectrum. By adding more isolation between the sample output and the first cold amplifier in the output line, the heat transport is strongly suppressed. Our interpretation is that the hot bath may arise from active two-level systems being excited by noise from the output line. We also apply a coherent drive, and use the waveguide to measure thermodynamic work and heat, suggesting waveguide spectroscopy is a useful means to study quantum heat engines and refrigerators. Finally, based on the theoretical model, we propose how a similar setup can be used as a noise spectrometer which provides a new solution for calibrating the background noise of hybrid quantum systems.

Ultimate quantum limit for amplification: a single atom in front of a mirror

  1. Emely Wiegand,
  2. Ping-Yi Wen,
  3. Per Delsing,
  4. Io-Chun Hoi,
  5. and Anton Frisk Kockum
We investigate three types of amplification processes for light fields coupling to an atom near the end of a one-dimensional semi-infinite waveguide. We consider two setups where a
drive creates population inversion in the bare or dressed basis of a three-level atom and one setup where the amplification is due to higher-order processes in a driven two-level atom. In all cases, the end of the waveguide acts as a mirror for the light. We find that this enhances the amplification in two ways compared to the same setups in an open waveguide. Firstly, the mirror forces all output from the atom to travel in one direction instead of being split up into two output channels. Secondly, interference due to the mirror enables tuning of the ratio of relaxation rates for different transitions in the atom to increase population inversion. We quantify the enhancement in amplification due to these factors and show that it can be demonstrated for standard parameters in experiments with superconducting quantum circuits.

Engineering the Level Structure of a Giant Artificial Atom in Waveguide Quantum Electrodynamics

  1. A. M. Vadiraj,
  2. Andreas Ask,
  3. T.G. McConkey,
  4. I. Nsanzineza,
  5. C.W. Sandbo Chang,
  6. Anton Frisk Kockum,
  7. and C. M. Wilson
Engineering light-matter interactions at the quantum level has been central to the pursuit of quantum optics for decades. Traditionally, this has been done by coupling emitters, typically
natural atoms and ions, to quantized electromagnetic fields in optical and microwave cavities. In these systems, the emitter is approximated as an idealized dipole, as its physical size is orders of magnitude smaller than the wavelength of light. Recently, artificial atoms made from superconducting circuits have enabled new frontiers in light-matter coupling, including the study of „giant“ atoms which cannot be approximated as simple dipoles. Here, we explore a new implementation of a giant artificial atom, formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line. The nature of this coupling allows the qubit radiation field to interfere with itself leading to some striking giant-atom effects. For instance, we observe strong frequency-dependent couplings of the qubit energy levels to the electromagnetic modes of the transmission line. Combined with the ability to in situ tune the qubit energy levels, we show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude. By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective lambda system where we clearly demonstrate electromagnetically induced transparency.

Quantum approximate optimization of the exact-cover problem on a superconducting quantum processor

  1. Andreas Bengtsson,
  2. Pontus Vikstål,
  3. Christopher Warren,
  4. Marika Svensson,
  5. Xiu Gu,
  6. Anton Frisk Kockum,
  7. Philip Krantz,
  8. Christian Križan,
  9. Daryoush Shiri,
  10. Ida-Maria Svensson,
  11. Giovanna Tancredi,
  12. Göran Johansson,
  13. Per Delsing,
  14. Giulia Ferrini,
  15. and Jonas Bylander
Present-day, noisy, small or intermediate-scale quantum processors—although far from fault-tolerant—support the execution of heuristic quantum algorithms, which might enable
a quantum advantage, for example, when applied to combinatorial optimization problems. On small-scale quantum processors, validations of such algorithms serve as important technology demonstrators. We implement the quantum approximate optimization algorithm (QAOA) on our hardware platform, consisting of two transmon qubits and one parametrically modulated coupler. We solve small instances of the NP-complete exact-cover problem, with 96.6\% success probability, by iterating the algorithm up to level two.

Characterizing decoherence rates of a superconducting qubit by direct microwave scattering

  1. Yong Lu,
  2. Andreas Bengtsson,
  3. Jonathan J. Burnett,
  4. Emely Wiegand,
  5. Baladitya Suri,
  6. Philip Krantz,
  7. Anita Fadavi Roudsari,
  8. Anton Frisk Kockum,
  9. Simone Gasparinetti,
  10. Göran Johansson,
  11. and Per Delsing
We experimentally investigate a superconducting qubit coupled to the end of an open transmission line, in a regime where the qubit decay rates to the transmission line and to its own
environment are comparable. We perform measurements of coherent and incoherent scattering, on- and off-resonant fluorescence, and time-resolved dynamics to determine the decay and decoherence rates of the qubit. In particular, these measurements let us discriminate between non-radiative decay and pure dephasing. We combine and contrast results across all methods and find consistent values for the extracted rates. The results show that the pure dephasing rate is one order of magnitude smaller than the non-radiative decay rate for our qubit. Our results indicate a pathway to benchmark decoherence rates of superconducting qubits in a resonator-free setting.

Quantum bits with Josephson junctions

  1. Anton Frisk Kockum,
  2. and Franco Nori
Already in the first edition of this book (Barone and Paterno, „Fundamentals and Physics and Applications of the Josephson Effect“, Wiley 1982), a great number of interesting
and important applications for Josephson junctions were discussed. In the decades that have passed since then, several new applications have emerged. This chapter treats one such new class of applications: quantum optics and quantum information processing (QIP) based on superconducting circuits with Josephson junctions. In this chapter, we aim to explain the basics of superconducting quantum circuits with Josephson junctions and demonstrate how these systems open up new prospects, both for QIP and for the study of quantum optics and atomic physics.

Simple preparation of Bell and GHZ states using ultrastrong-coupling circuit QED

  1. Vincenzo Macrì,
  2. Franco Nori,
  3. and Anton Frisk Kockum
The ability to entangle quantum systems is crucial for many applications in quantum technology, including quantum communication and quantum computing. Here, we propose a new, simple,
and versatile setup for deterministically creating Bell and Greenberger-Horne-Zeilinger (GHZ) states between photons of different frequencies in a two-step protocol. The setup consists of a quantum bit (qubit) coupled ultrastrongly to three photonic resonator modes. The only operations needed in our protocol are to put the qubit in a superposition state, and then tune its frequency in and out of resonance with sums of the resonator-mode frequencies. By choosing which frequency we tune the qubit to, we select which entangled state we create. We show that our protocol can be implemented with high fidelity using feasible experimental parameters in state-of-the-art circuit quantum electrodynamics. One possible application of our setup is as a node distributing entanglement in a quantum network.

Microwave photonics with superconducting quantum circuits

  1. Xiu Gu,
  2. Anton Frisk Kockum,
  3. Adam Miranowicz,
  4. Yu-xi Liu,
  5. and Franco Nori
In the past 20 years, impressive progress has been made both experimentally and theoretically in superconducting quantum circuits, which provide a platform for manipulating microwave
photons. This emerging field of superconducting quantum microwave circuits has been driven by many new interesting phenomena in microwave photonics and quantum information processing. For instance, the interaction between superconducting quantum circuits and single microwave photons can reach the regimes of strong, ultra-strong, and even deep-strong coupling. Many higher-order effects, unusual and less familiar in traditional cavity quantum electrodynamics with natural atoms, have been experimentally observed, e.g., giant Kerr effects, multi-photon processes, and single-atom induced bistability of microwave photons. These developments may lead to improved understanding of the counterintuitive properties of quantum mechanics, and speed up applications ranging from microwave photonics to superconducting quantum information processing. In this article, we review experimental and theoretical progress in microwave photonics with superconducting quantum circuits. We hope that this global review can provide a useful roadmap for this rapidly developing field.

Quantum Nonlinear Optics without Photons

  1. Roberto Stassi,
  2. Vincenzo Macrì,
  3. Anton Frisk Kockum,
  4. Omar Di Stefano,
  5. Adam Miranowicz,
  6. Salvatore Savasta,
  7. and Franco Nori
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here
we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially-separated atoms with probability approaching one. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analogue of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally-demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear inter-atomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

The giant acoustic atom — a single quantum system with a deterministic time delay

  1. Lingzhen Guo,
  2. Arne Grimsmo,
  3. Anton Frisk Kockum,
  4. Mikhail Pletyukhov,
  5. and Göran Johansson
We investigate the quantum dynamics of a single transmon qubit coupled to surface acoustic waves (SAWs) via two distant connection points. Since the acoustic speed is five orders of
magnitude slower than the speed of light, the travelling time between the two connection points needs to be taken into account. Therefore, we treat the transmon qubit as a giant atom with a deterministic time delay. We find that the spontaneous emission of the system, formed by the giant atom and the SAWs between its connection points, initially follows a polynomial decay law instead of an exponential one, as would be the case for a small atom. We obtain exact analytical results for the scattering properties of the giant atom up to two-phonon processes by using a diagrammatic approach. The time delay gives rise to novel features in the reflection, transmission, power spectra, and second-order correlation functions of the system. Furthermore, we find the short-time dynamics of the giant atom for arbitrary drive strength by a numerically exact method for open quantum systems with a finite-time-delay feedback loop.