Engineering the Level Structure of a Giant Artificial Atom in Waveguide Quantum Electrodynamics

  1. A. M. Vadiraj,
  2. Andreas Ask,
  3. T.G. McConkey,
  4. I. Nsanzineza,
  5. C.W. Sandbo Chang,
  6. Anton Frisk Kockum,
  7. and C. M. Wilson
Engineering light-matter interactions at the quantum level has been central to the pursuit of quantum optics for decades. Traditionally, this has been done by coupling emitters, typically
natural atoms and ions, to quantized electromagnetic fields in optical and microwave cavities. In these systems, the emitter is approximated as an idealized dipole, as its physical size is orders of magnitude smaller than the wavelength of light. Recently, artificial atoms made from superconducting circuits have enabled new frontiers in light-matter coupling, including the study of „giant“ atoms which cannot be approximated as simple dipoles. Here, we explore a new implementation of a giant artificial atom, formed from a transmon qubit coupled to propagating microwaves at multiple points along an open transmission line. The nature of this coupling allows the qubit radiation field to interfere with itself leading to some striking giant-atom effects. For instance, we observe strong frequency-dependent couplings of the qubit energy levels to the electromagnetic modes of the transmission line. Combined with the ability to in situ tune the qubit energy levels, we show that we can modify the relative coupling rates of multiple qubit transitions by more than an order of magnitude. By doing so, we engineer a metastable excited state, allowing us to operate the giant transmon as an effective lambda system where we clearly demonstrate electromagnetically induced transparency.

Mechanically Generating Entangled Photons from the Vacuum: A Microwave Circuit-Acoustic Resonator Analogue of the Unruh Effect

  1. Hui Wang,
  2. M. P. Blencowe,
  3. C. M. Wilson,
  4. and A. J. Rimberg
We consider a model for an oscillatory, relativistic accelerating photodetector inside a cavity and show that the entangled photon pair production from the vacuum (Unruh effect) can
be accurately described in the steady state by a non-degenerate parametric amplifier (NDPA), with the detector’s accelerating center of mass serving as the parametric drive (pump). We propose an Unruh effect analogue NDPA microwave superconducting circuit scheme, where the breathing mode of the coupling capacitance between the cavity and detector provides the mechanical pump. For realizable circuit parameters, the resulting photon production from the vacuum should be detectable.

Quantum Kitchen Sinks: An algorithm for machine learning on near-term quantum computers

  1. C. M. Wilson,
  2. J. S. Otterbach,
  3. N. Tezak,
  4. R. S. Smith,
  5. G. E. Crooks,
  6. and M. P. da Silva
Noisy intermediate-scale quantum computing devices are an exciting platform for the exploration of the power of near-term quantum applications. Performing nontrivial tasks in such aframework requires a fundamentally different approach than what would be used on an error-corrected quantum computer. One such approach is to use hybrid algorithms, where problems are reduced to a parameterized quantum circuit that is often optimized in a classical feedback loop. Here we described one such hybrid algorithm for machine learning tasks by building upon the classical algorithm known as random kitchen sinks. Our technique, called quantum kitchen sinks, uses quantum circuits to nonlinearly transform classical inputs into features that can then be used in a number of machine learning algorithms. We demonstrate the power and flexibility of this proposal by using it to solve binary classification problems for synthetic datasets as well as handwritten digits from the MNIST database. We can show, in particular, that small quantum circuits provide significant performance lift over standard linear classical algorithms, reducing classification error rates from 50% to <0.1%, and from 4.1% to 1.4%in these two examples, respectively. [/expand]

Probing the strongly driven spin-boson model in a superconducting quantum circuit

  1. L. Magazzù,
  2. P. Forn-Díaz,
  3. R. Belyansky,
  4. J.-L. Orgiazzi,
  5. M. A. Yurtalan,
  6. M. R. Otto,
  7. A. Lupascu,
  8. C. M. Wilson,
  9. and M. Grifoni
Quantum two-level systems interacting with the surroundings are ubiquitous in nature. The interaction suppresses quantum coherence and forces the system towards a steady state. Such
dissipative processes are captured by the paradigmatic spin-boson model, describing a two-state particle, the „spin“, interacting with an environment formed by harmonic oscillators. A fundamental question to date is to what extent intense coherent driving impacts a strongly dissipative system. Here we investigate experimentally and theoretically a superconducting qubit strongly coupled to an electromagnetic environment and subjected to a coherent drive. This setup realizes the driven Ohmic spin-boson model. We show that the drive reinforces environmental suppression of quantum coherence, and that a coherent-to-incoherent transition can be achieved by tuning the drive amplitude. An out-of-equilibrium detailed balance relation is demonstrated. These results advance fundamental understanding of open quantum systems and bear potential for applications in quantum technologies.

A quantum heat engine with coupled superconducting resonators

  1. Ali Ü. C. Hardal,
  2. Nur Aslan,
  3. C. M. Wilson,
  4. and Özgür E. Müstecaplıoğlu
We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically
excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

Shaped, on-demand microwave single-photon generator

  1. P. Forn-Díaz,
  2. C. W. Warren,
  3. C. W. S. Chang,
  4. A. M. Vadiraj,
  5. and C. M. Wilson
We demonstrate the full functionality of a circuit that generates single microwave photons on-demand, with a wavepacket that can be modulated with a near-arbitrary shape. We achieve
such a high tunability by coupling a superconducting qubit near the end of a semi-infinite transmission line. A DC-SQUID shunts the line to ground and is employed to modify the spatial dependence of the electromagnetic mode structure in the transmission line. This allows us to couple and decouple the qubit from the line, shaping its emission rate on fast-time scales. Our decoupling scheme is applicable to all types of superconducting qubits and other solid state systems and can be generalized to multiple qubits as well as to resonators.

Ultrastrong coupling of a single artificial atom to an electromagnetic continuum

  1. P. Forn-Díaz,
  2. J.J. García-Ripoll,
  3. B. Peropadre,
  4. M. A. Yurtalan,
  5. J.-L. Orgiazzi,
  6. R. Belyansky,
  7. C. M. Wilson,
  8. and A. Lupascu
The study of the interaction of light and matter has led to many fundamental discoveries as well as numerous important technologies. Over the last decades, great strides have been made
in increasing the strength of this interaction at the single-photon level, leading to a continual exploration of new physics and applications. In recent years, a major achievement has been the demonstration of the so-called strong coupling regime, a key advancement enabling great progress in quantum information science. In this work, we demonstrate light-matter interaction over an order of magnitude stronger than previously reported, reaching a new regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest values of the coupling, the spontaneous emission rate of the atom is comparable to its transition frequency. In this USC regime, the conventional quantum description of the atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required. Our results open the door to a wealth of new physics and applications. Beyond light-matter interaction itself, the tunability of our system makes it promising as a tool to study a number of important physical systems such as the well-known spin-boson and Kondo models.

Single-shot Readout of a Superconducting Qubit using a Josephson Parametric Oscillator

  1. Philip Krantz,
  2. Andreas Bengtsson,
  3. Michaël Simoen,
  4. Simon Gustavsson,
  5. Vitaly Shumeiko,
  6. W. D. Oliver,
  7. C. M. Wilson,
  8. Per Delsing,
  9. and Jonas Bylander
We present a new read-out technique for a superconducting qubit dispersively coupled to a Josephson parametric oscillator. We perform degenerate parametric flux pumping of the Josephson
inductance with a pump amplitude surpassing the threshold for parametric instability. We map the qubit states onto two distinct states of classical parametric oscillations: one oscillating state, with on average 180 photons in the resonator, and one with zero oscillation amplitude. We demonstrate single-shot readout performance, with a total state discrimination of 81.5%. When accounting for qubit errors, this gives a corrected fidelity of 98.7%, obviating the need for a following quantum-limited amplifier. An error budget indicates that the readout fidelity is currently limited by spurious switching events between two bistable states of the resonator.

Probing the quantum vacuum with an artificial atom in front of a mirror

  1. I.-C. Hoi,
  2. A. F. Kockum,
  3. L. Tornberg,
  4. A. Pourkabirian,
  5. G. Johansson,
  6. P. Delsing,
  7. and C. M. Wilson
Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very
real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a „mirror“, creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum.

Quantum nondemolition detection of a propagating microwave photon

  1. Sankar R. Sathyamoorthy,
  2. L. Tornberg,
  3. Anton F. Kockum,
  4. Ben Q. Baragiola,
  5. Joshua Combes,
  6. C.M. Wilson,
  7. Thomas M. Stace,
  8. and G. Johansson
The ability to detect the presence of a single, travelling photon without destroying it has been a long standing project in optics and is fundamental for applications in quantum information
and measurement. The realization of such a detector has been complicated by the fact that photon- photon interactions are very weak at optical frequencies. At microwave frequencies, very strong photon-photon interactions have been demonstrated. Here however, the single-photon detector has been elusive due to the low energy of the microwave photon. In this article, we present a realistic proposal for quantum nondemolition measurements of a single propagating microwave photon. The detector design is built on a of chain of artificial atoms connected through circulators which break time-reversal symmetry, making both signal and probe photons propagate in one direction only. Our analysis is based on the theory of cascaded quantum systems and quantum trajectories which takes the full dynamics of the atom-field interaction into account. We show that a signal-to-noise ratio above one can be realized with current state of the art microwave technology.