Realizing Repeated Quantum Error Correction in a Distance-Three Surface Code

  1. Sebastian Krinner,
  2. Nathan Lacroix,
  3. Ants Remm,
  4. Agustin Di Paolo,
  5. Elie Genois,
  6. Catherine Leroux,
  7. Christoph Hellings,
  8. Stefania Lazar,
  9. Francois Swiadek,
  10. Johannes Herrmann,
  11. Graham J. Norris,
  12. Christian Kraglund Andersen,
  13. Markus Müller,
  14. Alexandre Blais,
  15. Christopher Eichler,
  16. and Andreas Wallraff
Quantum computers hold the promise of solving computational problems which are intractable using conventional methods. For fault-tolerant operation quantum computers must correct errors
occurring due to unavoidable decoherence and limited control accuracy. Here, we demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors. Using 17 physical qubits in a superconducting circuit we encode quantum information in a distance-three logical qubit building up on recent distance-two error detection experiments. In an error correction cycle taking only 1.1μs, we demonstrate the preservation of four cardinal states of the logical qubit. Repeatedly executing the cycle, we measure and decode both bit- and phase-flip error syndromes using a minimum-weight perfect-matching algorithm in an error-model-free approach and apply corrections in postprocessing. We find a low error probability of 3% per cycle when rejecting experimental runs in which leakage is detected. The measured characteristics of our device agree well with a numerical model. Our demonstration of repeated, fast and high-performance quantum error correction cycles, together with recent advances in ion traps, support our understanding that fault-tolerant quantum computation will be practically realizable.

Realizing Quantum Convolutional Neural Networks on a Superconducting Quantum Processor to Recognize Quantum Phases

  1. Johannes Herrmann,
  2. Sergi Masot Llima,
  3. Ants Remm,
  4. Petr Zapletal,
  5. Nathan A. McMahon,
  6. Colin Scarato,
  7. Francois Swiadek,
  8. Christian Kraglund Andersen,
  9. Christoph Hellings,
  10. Sebastian Krinner,
  11. Nathan Lacroix,
  12. Stefania Lazar,
  13. Michael Kerschbaum,
  14. Dante Colao Zanuz,
  15. Graham J. Norris,
  16. Michael J. Hartmann,
  17. Andreas Wallraff,
  18. and Christopher Eichler
Quantum computing crucially relies on the ability to efficiently characterize the quantum states output by quantum hardware. Conventional methods which probe these states through direct
measurements and classically computed correlations become computationally expensive when increasing the system size. Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors. Here, we realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological (SPT) phases of a spin model characterized by a non-zero string order parameter. We benchmark the performance of the QCNN based on approximate ground states of a family of cluster-Ising Hamiltonians which we prepare using a hardware-efficient, low-depth state preparation circuit. We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.