Improving the speed and fidelity of quantum logic gates is essential to reach quantum advantage with future quantum computers. However, fast logic gates lead to increased leakage errorsin superconducting quantum processors based on qubits with low anharmonicity, such as transmons. To reduce leakage errors, we propose and experimentally demonstrate two new analytical methods, Fourier ansatz spectrum tuning derivative removal by adiabatic gate (FAST DRAG) and higher-derivative (HD) DRAG, both of which enable shaping single-qubit control pulses in the frequency domain to achieve stronger suppression of leakage transitions compared to previously demonstrated pulse shapes. Using the new methods to suppress the ef-transition of a transmon qubit with an anharmonicity of -212 MHz, we implement RX(π/2)-gates with a leakage error below 3.0×10−5 down to a gate duration of 6.25 ns, which corresponds to a 20-fold reduction in leakage compared to a conventional Cosine DRAG pulse. Employing the FAST DRAG method, we further achieve an error per gate of (1.56±0.07)×10−4 at a 7.9-ns gate duration, outperforming conventional pulse shapes both in terms of error and gate speed. Furthermore, we study error-amplifying measurements for the characterization of temporal microwave control pulse distortions, and demonstrate that non-Markovian coherent errors caused by such distortions may be a significant source of error for sub-10-ns single-qubit gates unless corrected using predistortion.
Tunable coupling of superconducting qubits has been widely studied due to its importance for isolated gate operations in scalable quantum processor architectures. Here, we demonstratea tunable qubit-qubit coupler based on a floating transmon device which allows us to place qubits at least 2 mm apart from each other while maintaining over 50 MHz coupling between the coupler and the qubits. In the introduced tunable-coupler design, both the qubit-qubit and the qubit-coupler couplings are mediated by two waveguides instead of relying on direct capacitive couplings between the components, reducing the impact of the qubit-qubit distance on the couplings. This leaves space for each qubit to have an individual readout resonator and a Purcell filter needed for fast high-fidelity readout. In addition, the large qubit-qubit distance reduces unwanted non-nearest neighbor coupling and allows multiple control lines to cross over the structure with minimal crosstalk. Using the proposed flexible and scalable architecture, we demonstrate a controlled-Z gate with (99.81±0.02)% fidelity.
Nonpairwise multi-qubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of moleculesand combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here we present a superconducting circuit architecture in which a coupling module mediates 2-local and 3-local interactions between three flux qubits by design. The system Hamiltonian is estimated via multi-qubit pulse sequences that implement Ramsey-type interferometry between all neighboring excitation manifolds in the system. The 3-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off, which is important for applications in quantum annealing, analog quantum simulation, and gate-model quantum computation.
We study experimentally and theoretically the transfer of population between the ground state and the second excited state in a transmon circuit by the use of superadiabatic stimulatedRaman adiabatic passage (saSTIRAP). We show that the transfer is remarkably resilient against variations in the amplitudes of the pulses (scaling errors), thus demostrating that the superadiabatic process inherits certain robustness features from the adiabatic one. In particular, we put in evidence a new plateau that appears at high values of the counterdiabatic pulse strength, which goes beyond the usual framework of saSTIRAP.
Routing quantum information between non-local computational nodes is a foundation for extensible networks of quantum processors. Quantum information can be transferred between arbitrarynodes by photons that propagate between them, or by resonantly coupling nearby nodes. Notably, conventional approaches involving propagating photons have limited fidelity due to photon loss and are often unidirectional, whereas architectures that use direct resonant coupling are bidirectional in principle, but can generally accommodate only a few local nodes. Here, we demonstrate high-fidelity, on-demand, bidirectional photon emission using an artificial molecule comprising two superconducting qubits strongly coupled to a waveguide. Quantum interference between the photon emission pathways from the molecule generate single photons that selectively propagate in a chosen direction. This architecture is capable of both photon emission and capture, and can be tiled in series to form an extensible network of quantum processors with all-to-all connectivity.
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a modelutilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3×3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.
Superconducting qubits are a promising platform for building a larger-scale quantum processor capable of solving otherwise intractable problems. In order for the processor to reachpractical viability, the gate errors need to be further suppressed and remain stable for extended periods of time. With recent advances in qubit control, both single- and two-qubit gate fidelities are now in many cases limited by the coherence times of the qubits. Here we experimentally employ closed-loop feedback to stabilize the frequency fluctuations of a superconducting transmon qubit, thereby increasing its coherence time by 26\% and reducing the single-qubit error rate from (8.5±2.1)×10−4 to (5.9±0.7)×10−4. Importantly, the resulting high-fidelity operation remains effective even away from the qubit flux-noise insensitive point, significantly increasing the frequency bandwidth over which the qubit can be operated with high fidelity. This approach is helpful in large qubit grids, where frequency crowding and parasitic interactions between the qubits limit their performance.
Demonstrating the quantum computational advantage will require high-fidelity control and readout of multi-qubit systems. As system size increases, multiplexed qubit readout becomesa practical necessity to limit the growth of resource overhead. Many contemporary qubit-state discriminators presume single-qubit operating conditions or require considerable computational effort, limiting their potential extensibility. Here, we present multi-qubit readout using neural networks as state discriminators. We compare our approach to contemporary methods employed on a quantum device with five superconducting qubits and frequency-multiplexed readout. We find that fully-connected feedforward neural networks increase the qubit-state-assignment fidelity for our system. Relative to contemporary discriminators, the assignment error rate is reduced by up to 25 % due to the compensation of system-dependent nonidealities such as readout crosstalk which is reduced by up to one order of magnitude. Our work demonstrates a potentially extensible building block for high-fidelity readout relevant to both near-term devices and future fault-tolerant systems.
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically andexponentially difficult to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3×3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.
Solid-state qubits with transition frequencies in the microwave regime, such as superconducting qubits, are at the forefront of quantum information processing. However, high-fidelity,simultaneous control of superconducting qubits at even a moderate scale remains a challenge, partly due to the complexities of packaging these devices. Here, we present an approach to microwave package design focusing on material choices, signal line engineering, and spurious mode suppression. We describe design guidelines validated using simulations and measurements used to develop a 24-port microwave package. Analyzing the qubit environment reveals no spurious modes up to 11GHz. The material and geometric design choices enable the package to support qubits with lifetimes exceeding 350 {\mu}s. The microwave package design guidelines presented here address many issues relevant for near-term quantum processors.