CircuitQ: An open-source toolbox for superconducting circuits

  1. Philipp Aumann,
  2. Tim Menke,
  3. William D. Oliver,
  4. and Wolfgang Lechner
We introduce CircuitQ, an open-source toolbox for the analysis of superconducting circuits implemented in Python. It features the automated construction of a symbolic Hamiltonian of
the input circuit, as well as a dynamic numerical representation of this Hamiltonian with a variable basis choice. Additional features include the estimation of the T1 lifetimes of the circuit states under various noise mechanisms. We review previously established circuit quantization methods and formulate them in a way that facilitates the software implementation. The toolbox is then showcased by applying it to practically relevant qubit circuits and comparing it to specialized circuit solvers. Our circuit quantization is both applicable to circuit inputs from a large design space and the software is open-sourced. We thereby add an important toolbox for the design of new quantum circuits for quantum information processing applications.

Characterizing and optimizing qubit coherence based on SQUID geometry

  1. Jochen Braumüller,
  2. Leon Ding,
  3. Antti Vepsäläinen,
  4. Youngkyu Sung,
  5. Morten Kjaergaard,
  6. Tim Menke,
  7. Roni Winik,
  8. David Kim,
  9. Bethany M. Niedzielski,
  10. Alexander Melville,
  11. Jonilyn L. Yoder,
  12. Cyrus F. Hirjibehedin,
  13. Terry P. Orlando,
  14. Simon Gustavsson,
  15. and William D. Oliver
The dominant source of decoherence in contemporary frequency-tunable superconducting qubits is 1/f flux noise. To understand its origin and find ways to minimize its impact, we systematically
study flux noise amplitudes in more than 50 flux qubits with varied SQUID geometry parameters and compare our results to a microscopic model of magnetic spin defects located at the interfaces surrounding the SQUID loops. Our data are in agreement with an extension of the previously proposed model, based on numerical simulations of the current distribution in the investigated SQUIDs. Our results and detailed model provide a guide for minimizing the flux noise susceptibility in future circuits.

Automated discovery of superconducting circuits and its application to 4-local coupler design

  1. Tim Menke,
  2. Florian Häse,
  3. Simon Gustavsson,
  4. Andrew J. Kerman,
  5. William D. Oliver,
  6. and Alán Aspuru-Guzik
Superconducting circuits have emerged as a promising platform to build quantum processors. The challenge of designing a circuit is to compromise between realizing a set of performance
metrics and reducing circuit complexity and noise sensitivity. At the same time, one needs to explore a large design space, and computational approaches often yield long simulation times. Here we automate the circuit design task using SCILLA, a software for automated discovery of superconducting circuits. SCILLA performs a parallelized, closed-loop optimization to design circuit diagrams that match pre-defined properties such as spectral features and noise sensitivities. We employ it to discover 4-local couplers for superconducting flux qubits and identify a circuit that outperforms an existing proposal with similar circuit structure in terms of coupling strength and noise resilience for experimentally accessible parameters. This work demonstrates how automated discovery can facilitate the design of complex circuit architectures for quantum information processing.

Reconfigurable re-entrant cavity for wireless coupling to an electro-optomechanical device

  1. Tim Menke,
  2. Peter S. Burns,
  3. Andrew P. Higginbotham,
  4. Nir S. Kampel,
  5. Robert W. Peterson,
  6. Katarina Cicak,
  7. Raymond W. Simmonds,
  8. Cindy A. Regal,
  9. and Konrad W. Lehnert
An electro-optomechanical device capable of microwave-to-optics conversion has recently been demonstrated, with the vision of enabling optical networks of superconducting qubits. Here
we present an improved converter design that uses a three-dimensional (3D) microwave cavity for coupling between the microwave transmission line and an integrated LC resonator on the converter chip. The new design simplifies the optical assembly and decouples it from the microwave part of the setup. Experimental demonstrations show that the modular device assembly allows us to flexibly tune the microwave coupling to the converter chip while maintaining small loss. We also find that electromechanical experiments are not impacted by the additional microwave cavity. Our design is compatible with a high-finesse optical cavity and will improve optical performance.