Quantum behavior of a superconducting Duffing oscillator at the dissipative phase transition

  1. Qi-Ming Chen,
  2. Michael Fischer,
  3. Yuki Nojiri,
  4. Michael Renger,
  5. Edwar Xie,
  6. Matti Partanen,
  7. Stefan Pogorzalek,
  8. Kirill G. Fedorov,
  9. Achim Marx,
  10. Frank Deppe,
  11. and Rudolf Gross
Understanding the non-deterministic behavior of deterministic nonlinear systems has been an implicit dream since Lorenz named it the „butterfly effect“. A prominent example
is the hysteresis and bistability of the Duffing oscillator, which in the classical description is attributed to the coexistence of two steady states in a double-well potential. However, this interpretation fails in the quantum-mechanical perspective, where a single unique steady state is allowed in the whole parameter space. Here, we measure the non-equilibrium dynamics of a superconducting Duffing oscillator and reconcile the classical and quantum descriptions in a unified picture of quantum metastability. We demonstrate that the two classically regarded steady states are in fact metastable states. They have a remarkably long lifetime in the classical hysteresis regime but must eventually relax into a single unique steady state allowed by quantum mechanics. By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition, which mimics a sudden change of the mean field in a 11-site Bose-Hubbard lattice. We also reveal the two distinct phases of the transition by quantum state tomography, namely a coherent-state phase and a squeezed-state phase separated by a critical point. Our results reveal a smooth quantum state evolution behind a sudden dissipative phase transition, and they form an essential step towards understanding hysteresis and instability in non-equilibrium systems.

Propagating Quantum Microwaves: Towards Applications in Communication and Sensing

  1. Mateo Casariego,
  2. Emmanuel Zambrini Cruzeiro,
  3. Stefano Gherardini,
  4. Tasio Gonzalez-Raya,
  5. Rui André,
  6. Gonçalo Frazão,
  7. Giacomo Catto,
  8. Mikko Möttönen,
  9. Debopam Datta,
  10. Klaara Viisanen,
  11. Joonas Govenius,
  12. Mika Prunnila,
  13. Kimmo Tuominen,
  14. Maximilian Reichert,
  15. Michael Renger,
  16. Kirill G. Fedorov,
  17. Frank Deppe,
  18. Harriet van der Vliet,
  19. A. J. Matthews,
  20. Yolanda Fernández,
  21. R. Assouly,
  22. R. Dassonneville,
  23. B. Huard,
  24. Mikel Sanz,
  25. and Yasser Omar
The field of propagating quantum microwaves has started to receive considerable attention in the past few years. Motivated at first by the lack of an efficient microwave-to-optical
platform that could solve the issue of secure communication between remote superconducting chips, current efforts are starting to reach other areas, from quantum communications to sensing. Here, we attempt at giving a state-of-the-art view of the two, pointing at some of the technical and theoretical challenges we need to address, and while providing some novel ideas and directions for future research. Hence, the goal of this paper is to provide a bigger picture, and — we hope — to inspire new ideas in quantum communications and sensing: from open-air microwave quantum key distribution to direct detection of dark matter, we expect that the recent efforts and results in quantum microwaves will soon attract a wider audience, not only in the academic community, but also in an industrial environment.

The scattering coefficients of superconducting microwave resonators: II. System-bath approach

  1. Qi-Ming Chen,
  2. Matti Partanen,
  3. Florian Fesquet,
  4. Kedar E. Honasoge,
  5. Fabian Kronowetter,
  6. Yuki Nojiri,
  7. Michael Renger,
  8. Kirill G. Fedorov,
  9. Achim Marx,
  10. Frank Deppe,
  11. and Rudolf Gross
We describe a unified quantum approach for analyzing the scattering coefficients of superconducting microwave resonators with a variety of geometries. We also generalize the method
to a chain of resonators in either hanger- or necklace-type, and reveal interesting transport properties similar to a photonic crystal. It is shown that both the quantum and classical analyses provide consistent results, and they together form a solid basis for analyzing the decoherence effect in a general microwave resonator. These results pave the way for designing and applying superconducting microwave resonators in complex circuits, and should stimulate the interest of distinguishing different decoherence mechanisms of a resonator mode beyond free energy relaxation.

The scattering coefficients of superconducting microwave resonators: I. Transfer-matrix approach

  1. Qi-Ming Chen,
  2. Meike Pfeiffer,
  3. Matti Partanen,
  4. Florian Fesquet,
  5. Kedar E. Honasoge,
  6. Fabian Kronowetter,
  7. Yuki Nojiri,
  8. Michael Renger,
  9. Kirill G. Fedorov,
  10. Achim Marx,
  11. Frank Deppe,
  12. and Rudolf Gross
We describe a unified classical approach for analyzing the scattering coefficients of superconducting microwave resonators with a variety of geometries. To fill the gap between experiment
and theory, we also consider the influences of small circuit asymmetry and the finite length of the feedlines, and describe a procedure to correct them in typical measurement results. We show that, similar to the transmission coefficient of a hanger-type resonator, the reflection coefficient of a necklace- or bridge-type resonator does also contain a reference point which can be used to characterize the electrical properties of a microwave resonator in a single measurement. Our results provide a comprehensive understanding of superconducting microwave resonators from the design concepts to the characterization details.

Tuning and Amplifying the Interactions in Superconducting Quantum Circuits with Subradiant Qubits

  1. Qi-Ming Chen,
  2. Florian Fesquet,
  3. Kedar E. Honasoge,
  4. Fabian Kronowetter,
  5. Yuki Nojiri,
  6. Michael Renger,
  7. Kirill G. Fedorov,
  8. Achim Marx,
  9. Frank Deppe,
  10. and Rudolf Gross
We propose a tunable coupler consisting of N off-resonant and fixed-frequency qubits that can tune and even amplify the effective interaction between two general circuit components.
The tuning range of the interaction is proportional to N, with a minimum value of zero and a maximum that can exceed the physical coupling rates in the system. The effective coupling rate is determined by the collective magnetic quantum number of the qubit ensemble, which takes only discrete values and is free from collective decay and decoherence. Using single-photon pi-pulses, the coupling rate can be switched between arbitrary initial and final values within the dynamic range in a single step without going through intermediate values. A cascade of the couplers for amplifying small interactions or weak signals is also discussed. These results should not only stimulate interest in exploring the collective effects in quantum information processing, but also enable development of applications in tuning and amplifying the interactions in a general cavity-QED system.

Mechanical frequency control in inductively coupled electromechanical systems

  1. Thomas Luschmann,
  2. Philip Schmidt,
  3. Frank Deppe,
  4. Achim Marx,
  5. Alvaro Sanchez,
  6. Rudolf Gross,
  7. and Hans Huebl
Nano-electromechanical systems implement the opto-mechanical interaction combining electromagnetic circuits and mechanical elements. We investigate an inductively coupled nano-electromechanical
system, where a superconducting quantum interference device (SQUID) realizes the coupling. We show that the resonance frequency of the mechanically compliant string embedded into the SQUID loop can be controlled in two different ways: (i) the bias magnetic flux applied perpendicular to the SQUID loop, (ii) the magnitude of the in-plane bias magnetic field contributing to the nano-electromechanical coupling. These findings are quantitatively explained by the inductive interaction contributing to the effective spring constant of the mechanical resonator. In addition, we observe a residual field dependent shift of the mechanical resonance frequency, which we attribute to the finite flux pinning of vortices trapped in the magnetic field biased nanostring.

In-situ tunable nonlinearity and competing signal paths in coupled superconducting resonators

  1. Michael Fischer,
  2. Qi-Ming Chen,
  3. Christian Besson,
  4. Peter Eder,
  5. Jan Goetz,
  6. Stefan Pogorzalek,
  7. Michael Renger,
  8. Edwar Xie,
  9. Michael J. Hartmann,
  10. Kirill G. Fedorov,
  11. Achim Marx,
  12. Frank Deppe,
  13. and Rudolf Gross
We have fabricated and studied a system of two tunable and coupled nonlinear superconducting resonators. The nonlinearity is introduced by galvanically coupled dc-SQUIDs. We simulate
the system response by means of a circuit model, which includes an additional signal path introduced by the electromagnetic environment. Furthermore, we present two methods allowing us to experimentally determine the nonlinearity. First, we fit the measured frequency and flux dependence of the transmission data to simulations based on the equivalent circuit model. Second, we fit the power dependence of the transmission data to a model that is predicted by the nonlinear equation of motion describing the system. Our results show that we are able to tune the nonlinearity of the resonators by almost two orders of magnitude via an external coil and two on-chip antennas. The studied system represents the basic building block for larger systems, allowing for quantum simulations of bosonic many-body systems with a larger number of lattice sites.

Quantum Fourier Transform in Oscillating Modes

  1. Qi-Ming Chen,
  2. Frank Deppe,
  3. Re-Bing Wu,
  4. Luyan Sun,
  5. Yu-xi Liu,
  6. Yuki Nojiri,
  7. Stefan Pogorzalek,
  8. Michael Renger,
  9. Matti Partanen,
  10. Kirill G. Fedorov,
  11. Achim Marx,
  12. and Rudolf Gross
Quantum Fourier transform (QFT) is a key ingredient of many quantum algorithms. In typical applications such as phase estimation, a considerable number of ancilla qubits and gates are
used to form a Hilbert space large enough for high-precision results. Qubit recycling reduces the number of ancilla qubits to one, but it is only applicable to semi-classical QFT and requires repeated measurements and feedforward within the coherence time of the qubits. In this work, we explore a novel approach based on resonators that forms a high-dimensional Hilbert space for the realization of QFT. By employing the perfect state-transfer method, we map an unknown multi-qubit state to a single resonator, and obtain the QFT state in the second oscillator through cross-Kerr interaction and projective measurement. A quantitive analysis shows that our method allows for high-dimensional and fully-quantum QFT employing the state-of-the-art superconducting quantum circuits. This paves the way for implementing various QFT related quantum algorithms.

Sideband-resolved resonator electromechanics on the single-photon level based on a nonlinear Josephson inductance

  1. Philip Schmidt,
  2. Mohammad T. Amawi,
  3. Stefan Pogorzalek,
  4. Frank Deppe,
  5. Achim Marx,
  6. Rudolf Gross,
  7. and Hans Huebl
as well as the generation of phononic and photonic quantum states [3-10]."]Electromechanical systems realize this optomechanical interaction in the microwave regime. In this context, capacitive coupling arrangements demonstrated interaction rates of up to 280 Hz [11]. Complementary, early proposals [12-15] and experiments [16,17] suggest that inductive coupling schemes are tunable and have the potential to reach the vacuum strong-coupling regime. Here, we follow the latter approach by integrating a partly suspended superconducting quantum interference device (SQUID) into a microwave resonator. The mechanical displacement translates into a time varying flux in the SQUID loop, thereby providing an inductive electromechanical coupling. We demonstrate a sideband-resolved electromechanical system with a tunable vacuum coupling rate of up to 1.62 kHz, realizing sub-aN Hz-1/2 force sensitivities. Moreover, we study the frequency splitting of the microwave resonator for large mechanical amplitudes confirming the large coupling. The presented inductive coupling scheme shows the high potential of SQUID-based electromechanics for targeting the full wealth of the intrinsically nonlinear optomechanics Hamiltonian.

Challenges in Open-air Microwave Quantum Communication and Sensing

  1. Mikel Sanz,
  2. Kirill G. Fedorov,
  3. Frank Deppe,
  4. and Enrique Solano
Quantum communication is a holy grail to achieve secure communication among a set of partners, since it is provably unbreakable by physical laws. Quantum sensing employs quantum entanglement
as an extra resource to determine parameters by either using less resources or attaining a precision unachievable in classical protocols. A paradigmatic example is the quantum radar, which allows one to detect an object without being detected oneself, by making use of the additional asset provided by quantum entanglement to reduce the intensity of the signal. In the optical regime, impressive technological advances have been reached in the last years, such as the first quantum communication between ground and satellites, as well as the first proof-of-principle experiments in quantum sensing. The development of microwave quantum technologies turned out, nonetheless, to be more challenging. Here, we will discuss the challenges regarding the use of microwaves for quantum communication and sensing. Based on this analysis, we propose a roadmap to achieve real-life applications in these fields.