High-Fidelity, Frequency-Flexible Two-Qubit Fluxonium Gates with a Transmon Coupler

  1. Leon Ding,
  2. Max Hays,
  3. Youngkyu Sung,
  4. Bharath Kannan,
  5. Junyoung An,
  6. Agustin Di Paolo,
  7. Amir H. Karamlou,
  8. Thomas M. Hazard,
  9. Kate Azar,
  10. David K. Kim,
  11. Bethany M. Niedzielski,
  12. Alexander Melville,
  13. Mollie E. Schwartz,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Simon Gustavsson,
  17. Jeffrey A. Grover,
  18. Kyle Serniak,
  19. and William D. Oliver
We propose and demonstrate an architecture for fluxonium-fluxonium two-qubit gates mediated by transmon couplers (FTF, for fluxonium-transmon-fluxonium). Relative to architectures that
exclusively rely on a direct coupling between fluxonium qubits, FTF enables stronger couplings for gates using non-computational states while simultaneously suppressing the static controlled-phase entangling rate (ZZ) down to kHz levels, all without requiring strict parameter matching. Here we implement FTF with a flux-tunable transmon coupler and demonstrate a microwave-activated controlled-Z (CZ) gate whose operation frequency can be tuned over a 2 GHz range, adding frequency allocation freedom for FTF’s in larger systems. Across this range, state-of-the-art CZ gate fidelities were observed over many bias points and reproduced across the two devices characterized in this work. After optimizing both the operation frequency and the gate duration, we achieved peak CZ fidelities in the 99.85-99.9\% range. Finally, we implemented model-free reinforcement learning of the pulse parameters to boost the mean gate fidelity up to 99.922±0.009%, averaged over roughly an hour between scheduled training runs. Beyond the microwave-activated CZ gate we present here, FTF can be applied to a variety of other fluxonium gate schemes to improve gate fidelities and passively reduce unwanted ZZ interactions.

Learning-based Calibration of Flux Crosstalk in Transmon Qubit Arrays

  1. Cora N. Barrett,
  2. Amir H. Karamlou,
  3. Sarah E. Muschinske,
  4. Ilan T. Rosen,
  5. Jochen Braumüller,
  6. Rabindra Das,
  7. David K. Kim,
  8. Bethany M. Niedzielski,
  9. Meghan Schuldt,
  10. Kyle Serniak,
  11. Mollie E. Schwartz,
  12. Jonilyn L. Yoder,
  13. Terry P. Orlando,
  14. Simon Gustavsson,
  15. Jeffrey A. Grover,
  16. and William D. Oliver
Superconducting quantum processors comprising flux-tunable data and coupler qubits are a promising platform for quantum computation. However, magnetic flux crosstalk between the flux-control
lines and the constituent qubits impedes precision control of qubit frequencies, presenting a challenge to scaling this platform. In order to implement high-fidelity digital and analog quantum operations, one must characterize the flux crosstalk and compensate for it. In this work, we introduce a learning-based calibration protocol and demonstrate its experimental performance by calibrating an array of 16 flux-tunable transmon qubits. To demonstrate the extensibility of our protocol, we simulate the crosstalk matrix learning procedure for larger arrays of transmon qubits. We observe an empirically linear scaling with system size, while maintaining a median qubit frequency error below 300 kHz.

Quantum transport and localization in 1d and 2d tight-binding lattices

  1. Amir H. Karamlou,
  2. Jochen Braumüller,
  3. Yariv Yanay,
  4. Agustin Di Paolo,
  5. Patrick Harrington,
  6. Bharath Kannan,
  7. David Kim,
  8. Morten Kjaergaard,
  9. Alexander Melville,
  10. Sarah Muschinske,
  11. Bethany Niedzielski,
  12. Antti Vepsäläinen,
  13. Roni Winik,
  14. Jonilyn L. Yoder,
  15. Mollie Schwartz,
  16. Charles Tahan,
  17. Terry P. Orlando,
  18. Simon Gustavsson,
  19. and William D. Oliver
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a model
utilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3×3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.

Improving qubit coherence using closed-loop feedback

  1. Antti Vepsäläinen,
  2. Roni Winik,
  3. Amir H. Karamlou,
  4. Jochen Braumüller,
  5. Agustin Di Paolo,
  6. Youngkyu Sung,
  7. Bharath Kannan,
  8. Morten Kjaergaard,
  9. David K. Kim,
  10. Alexander J. Melville,
  11. Bethany M. Niedzielski,
  12. Jonilyn L. Yoder,
  13. Simon Gustavsson,
  14. and William D. Oliver
Superconducting qubits are a promising platform for building a larger-scale quantum processor capable of solving otherwise intractable problems. In order for the processor to reach
practical viability, the gate errors need to be further suppressed and remain stable for extended periods of time. With recent advances in qubit control, both single- and two-qubit gate fidelities are now in many cases limited by the coherence times of the qubits. Here we experimentally employ closed-loop feedback to stabilize the frequency fluctuations of a superconducting transmon qubit, thereby increasing its coherence time by 26\% and reducing the single-qubit error rate from (8.5±2.1)×10−4 to (5.9±0.7)×10−4. Importantly, the resulting high-fidelity operation remains effective even away from the qubit flux-noise insensitive point, significantly increasing the frequency bandwidth over which the qubit can be operated with high fidelity. This approach is helpful in large qubit grids, where frequency crowding and parasitic interactions between the qubits limit their performance.

Probing quantum information propagation with out-of-time-ordered correlators

  1. Jochen Braumüller,
  2. Amir H. Karamlou,
  3. Yariv Yanay,
  4. Bharath Kannan,
  5. David Kim,
  6. Morten Kjaergaard,
  7. Alexander Melville,
  8. Bethany M. Niedzielski,
  9. Youngkyu Sung,
  10. Antti Vepsäläinen,
  11. Roni Winik,
  12. Jonilyn L. Yoder,
  13. Terry P. Orlando,
  14. Simon Gustavsson,
  15. Charles Tahan,
  16. and William D. Oliver
Interacting many-body quantum systems show a rich array of physical phenomena and dynamical properties, but are notoriously difficult to study: they are challenging analytically and
exponentially difficult to simulate on classical computers. Small-scale quantum information processors hold the promise to efficiently emulate these systems, but characterizing their dynamics is experimentally challenging, requiring probes beyond simple correlation functions and multi-body tomographic methods. Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs), one of the most effective tools for studying quantum system evolution and processes like quantum thermalization. We implement a 3×3 two-dimensional hard-core Bose-Hubbard lattice with a superconducting circuit, study its time-reversibility by performing a Loschmidt echo, and measure OTOCs that enable us to observe the propagation of quantum information. A central requirement for our experiments is the ability to coherently reverse time evolution, which we achieve with a digital-analog simulation scheme. In the presence of frequency disorder, we observe that localization can partially be overcome with more particles present, a possible signature of many-body localization in two dimensions.

Impact of ionizing radiation on superconducting qubit coherence

  1. Antti Vepsäläinen,
  2. Amir H. Karamlou,
  3. John L. Orrell,
  4. Akshunna S. Dogra,
  5. Ben Loer,
  6. Francisca Vasconcelos,
  7. David K. Kim,
  8. Alexander J. Melville,
  9. Bethany M. Niedzielski,
  10. Jonilyn L. Yoder,
  11. Simon Gustavsson,
  12. Joseph A. Formaggio,
  13. Brent A. VanDevender,
  14. and William D. Oliver
The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However,
superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for today’s qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.