Long-distance transmon coupler with CZ gate fidelity above 99.8%

  1. Fabian Marxer,
  2. Antti Vepsäläinen,
  3. Shan W. Jolin,
  4. Jani Tuorila,
  5. Alessandro Landra,
  6. Caspar Ockeloen-Korppi,
  7. Wei Liu,
  8. Olli Ahonen,
  9. Adrian Auer,
  10. Lucien Belzane,
  11. Ville Bergholm,
  12. Chun Fai Chan,
  13. Kok Wai Chan,
  14. Tuukka Hiltunen,
  15. Juho Hotari,
  16. Eric Hyyppä,
  17. Joni Ikonen,
  18. David Janzso,
  19. Miikka Koistinen,
  20. Janne Kotilahti,
  21. Tianyi Li,
  22. Jyrgen Luus,
  23. Miha Papic,
  24. Matti Partanen,
  25. Jukka Räbinä,
  26. Jari Rosti,
  27. Mykhailo Savytskyi,
  28. Marko Seppälä,
  29. Vasilii Sevriuk,
  30. Eelis Takala,
  31. Brian Tarasinski,
  32. Manish J. Thapa,
  33. Francesca Tosto,
  34. Natalia Vorobeva,
  35. Liuqi Yu,
  36. Kuan Yen Tan,
  37. Juha Hassel,
  38. Mikko Möttönen,
  39. and Johannes Heinsoo
Tunable coupling of superconducting qubits has been widely studied due to its importance for isolated gate operations in scalable quantum processor architectures. Here, we demonstrate
a tunable qubit-qubit coupler based on a floating transmon device which allows us to place qubits at least 2 mm apart from each other while maintaining over 50 MHz coupling between the coupler and the qubits. In the introduced tunable-coupler design, both the qubit-qubit and the qubit-coupler couplings are mediated by two waveguides instead of relying on direct capacitive couplings between the components, reducing the impact of the qubit-qubit distance on the couplings. This leaves space for each qubit to have an individual readout resonator and a Purcell filter needed for fast high-fidelity readout. In addition, the large qubit-qubit distance reduces unwanted non-nearest neighbor coupling and allows multiple control lines to cross over the structure with minimal crosstalk. Using the proposed flexible and scalable architecture, we demonstrate a controlled-Z gate with (99.81±0.02)% fidelity.

Unimon qubit

  1. Eric Hyyppä,
  2. Suman Kundu,
  3. Chun Fai Chan,
  4. András Gunyhó,
  5. Juho Hotari,
  6. Olavi Kiuru,
  7. Alessandro Landra,
  8. Wei Liu,
  9. Fabian Marxer,
  10. Akseli Mäkinen,
  11. Jean-Luc Orgiazzi,
  12. Mario Palma,
  13. Mykhailo Savytskyi,
  14. Francesca Tosto,
  15. Jani Tuorila,
  16. Vasilii Vadimov,
  17. Tianyi Li,
  18. Caspar Ockeloen-Korppi,
  19. Johannes Heinsoo,
  20. Kuan Yen Tan,
  21. Juha Hassel,
  22. and Mikko Möttönen
Superconducting qubits are one of the most promising candidates to implement quantum computers. The superiority of superconducting quantum computers over any classical device in simulating
random but well-determined quantum circuits has already been shown in two independent experiments and important steps have been taken in quantum error correction. However, the currently wide-spread qubit designs do not yet provide high enough performance to enable practical applications or efficient scaling of logical qubits owing to one or several following issues: sensitivity to charge or flux noise leading to decoherence, too weak non-linearity preventing fast operations, undesirably dense excitation spectrum, or complicated design vulnerable to parasitic capacitance. Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. We measure the qubit frequency, ω01/(2π), and anharmonicity α over the full dc-flux range and observe, in agreement with our quantum models, that the qubit anharmonicity is greatly enhanced at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13-ns single-qubit gates on two qubits with (ω01,α)=(4.49 GHz,434 MHz)×2π and (3.55 GHz,744 MHz)×2π, respectively. The energy relaxation time T1≲10 μs is stable for hours and seems to be limited by dielectric losses. Thus, future improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible quantum advantage with noisy systems.

Entanglement Stabilization using Parity Detection and Real-Time Feedback in Superconducting Circuits

  1. Christian Kraglund Andersen,
  2. Ants Remm,
  3. Stefania Balasiu,
  4. Sebastian Krinner,
  5. Johannes Heinsoo,
  6. Jean-Claude Besse,
  7. Mihai Gabureac,
  8. Andreas Wallraff,
  9. and Christopher Eichler
Fault tolerant quantum computing relies on the ability to detect and correct errors, which in quantum error correction codes is typically achieved by projectively measuring multi-qubit
parity operators and by conditioning operations on the observed error syndromes. Here, we experimentally demonstrate the use of an ancillary qubit to repeatedly measure the ZZ and XX parity operators of two data qubits and to thereby project their joint state into the respective parity subspaces. By applying feedback operations conditioned on the outcomes of individual parity measurements, we demonstrate the real-time stabilization of a Bell state with a fidelity of F≈74% in up to 12 cycles of the feedback loop. We also perform the protocol using Pauli frame updating and, in contrast to the case of real-time stabilization, observe a steady decrease in fidelity from cycle to cycle. The ability to stabilize parity over multiple feedback rounds with no reduction in fidelity provides strong evidence for the feasibility of executing stabilizer codes on timescales much longer than the intrinsic coherence times of the constituent qubits.

Quantum communication with time-bin encoded microwave photons

  1. Philipp Kurpiers,
  2. Marek Pechal,
  3. Baptiste Royer,
  4. Paul Magnard,
  5. Theo Walter,
  6. Johannes Heinsoo,
  7. Yves Salathé,
  8. Abdulkadir Akin,
  9. Simon Storz,
  10. Jean-Claude Besse,
  11. Simone Gasparinetti,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example,
by monitoring for photon loss at the receiving end of the quantum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.

Engineering cryogenic setups for 100-qubit scale superconducting circuit systems

  1. Sebastian Krinner,
  2. Simon Storz,
  3. Philipp Kurpiers,
  4. Paul Magnard,
  5. Johannes Heinsoo,
  6. Raphael Keller,
  7. Janis Luetolf,
  8. Christopher Eichler,
  9. and Andreas Wallraff
A robust cryogenic infrastructure in form of a wired, thermally optimized dilution refrigerator is essential for present and future solid-state based quantum processors. Here, we engineer
an extensible cryogenic setup, which minimizes passive and active heat loads, while guaranteeing rapid qubit control and readout. We review design criteria for qubit drive lines, flux lines, and output lines used in typical experiments with superconducting circuits and describe each type of line in detail. The passive heat load of stainless steel and NbTi coaxial cables and the active load due to signal dissipation are measured, validating our robust and extensible concept for thermal anchoring of attenuators, cables, and other microwave components. Our results are important for managing the heat budget of future large-scale quantum computers based on superconducting circuits.

Rapid high-fidelity multiplexed readout of superconducting qubits

  1. Johannes Heinsoo,
  2. Christian Kraglund Andersen,
  3. Ants Remm,
  4. Sebastian Krinner,
  5. Theodore Walter,
  6. Yves Salathé,
  7. Simone Gasperinetti,
  8. Jean-Claude Besse,
  9. Anton Potočnik,
  10. Christopher Eichler,
  11. and Andreas Wallraff
The duration and fidelity of qubit readout is a critical factor for applications in quantum information processing as it limits the fidelity of algorithms which reuse qubits after measurement
or apply feedback based on the measurement result. Here we present fast multiplexed readout of five qubits in a single 1.2 GHz wide readout channel. Using a readout pulse length of 80 ns and populating readout resonators for less than 250 ns we find an average correct assignment probability for the five measured qubits to be 97%. The differences between the individual readout errors and those found when measuring the qubits simultaneously are within 1%. We employ individual Purcell filters for each readout resonator to suppress off-resonant driving, which we characterize by the dephasing imposed on unintentionally measured qubits. We expect the here presented readout scheme to become particularly useful for the selective readout of individual qubits in multi-qubit quantum processors.

Fast and Unconditional All-Microwave Reset of a Superconducting Qubit

  1. Paul Magnard,
  2. Philipp Kurpiers,
  3. Baptiste Royer,
  4. Theo Walter,
  5. Jean-Claude Besse,
  6. Simone Gasparinetti,
  7. Marek Pechal,
  8. Johannes Heinsoo,
  9. Simon Storz,
  10. Alexandre Blais,
  11. and Andreas Wallraff
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon
artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with 0.2% residual excitation in less than 500ns. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.

Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons

  1. Philipp Kurpiers,
  2. Paul Magnard,
  3. Theo Walter,
  4. Baptiste Royer,
  5. Marek Pechal,
  6. Johannes Heinsoo,
  7. Yves Salathé,
  8. Abdulkadir Akin,
  9. Simon Storz,
  10. Jean-Claude Besse,
  11. Simone Gasparinetti,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided into
subroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of 50kHz using the emitted photons which are absorbed at the receiving node with a probability of 98.1±0.1% achieving a transfer process fidelity of 80.02±0.07%. We also prepare on demand remote entanglement with a fidelity as high as 78.9±0.1%. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.