We propose to couple the flux degree of freedom of one mode with the charge degree of freedom of a second mode in a hybrid superconducting-semiconducting architecture. Nonreciprocitycan arise in this architecture in the presence of external static magnetic fields alone. We leverage this property to engineer a passive on-chip gyrator, the fundamental two-port nonreciprocal device which can be used to build other nonreciprocal devices such as circulators. We analytically and numerically investigate how the nonlinearity of the interaction, circuit disorder and parasitic couplings affect the scattering response of the gyrator.

Nonpairwise multi-qubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of moleculesand combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here we present a superconducting circuit architecture in which a coupling module mediates 2-local and 3-local interactions between three flux qubits by design. The system Hamiltonian is estimated via multi-qubit pulse sequences that implement Ramsey-type interferometry between all neighboring excitation manifolds in the system. The 3-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off, which is important for applications in quantum annealing, analog quantum simulation, and gate-model quantum computation.

We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers. In the appropriate frame, the drive parameters appear as tunable knobs enablingselective two-qubit coupling and coherent-error suppression. We moreover introduce a set of controlled-phase gates based on drive-amplitude and drive-frequency modulation. We develop a theoretical framework based on Floquet theory to model microwave-activated interactions with time-dependent drive parameters, which we also use for pulse shaping. We perform numerical simulations of the gate fidelity for realistic circuit parameters, and discuss the impact of drive-induced decoherence. We estimate average gate fidelities beyond 99.9% for all-microwave controlled-phase operations with gate times in the range 50−120ns. These two-qubit gates can operate over a large drive-frequency bandwidth and in a broad range of circuit parameters, thereby improving extensibility. We address the frequency allocation problem for this architecture using perturbation theory, demonstrating that qubit, coupler and drive frequencies can be chosen such that undesired static and driven interactions remain bounded in a multi-qubit device. Our numerical methods are useful for describing the time-evolution of driven systems in the adiabatic limit, and are applicable to a wide variety of circuit-QED setups.

Routing quantum information between non-local computational nodes is a foundation for extensible networks of quantum processors. Quantum information can be transferred between arbitrarynodes by photons that propagate between them, or by resonantly coupling nearby nodes. Notably, conventional approaches involving propagating photons have limited fidelity due to photon loss and are often unidirectional, whereas architectures that use direct resonant coupling are bidirectional in principle, but can generally accommodate only a few local nodes. Here, we demonstrate high-fidelity, on-demand, bidirectional photon emission using an artificial molecule comprising two superconducting qubits strongly coupled to a waveguide. Quantum interference between the photon emission pathways from the molecule generate single photons that selectively propagate in a chosen direction. This architecture is capable of both photon emission and capture, and can be tiled in series to form an extensible network of quantum processors with all-to-all connectivity.

Multi-spin interactions can be engineered with artificial quantum spins. However, it is challenging to verify such interactions experimentally. Here we describe two methods to characterizethe n-local coupling of n spins. First, we analyze the variation of the transition energy of the static system as a function of local spin fields. Standard measurement techniques are employed to distinguish n-local interactions between up to five spins from lower-order contributions in the presence of noise and spurious fields and couplings. Second, we show a detection technique that relies on time dependent driving of the coupling term. Generalizations to larger system sizes are analyzed for both static and dynamic detection methods, and we find that the dynamic method is asymptotically optimal when increasing the system size. The proposed methods enable robust exploration of multi-spin interactions across a broad range of both coupling strengths and qubit modalities.

We consider mediated interactions in an array of floating transmons, where each qubit capacitor consists of two superconducting pads galvanically isolated from ground. Each such paircontributes two quantum degrees of freedom, one of which is used as a qubit, while the other remains fixed. However, these extraneous modes can generate coupling between the qubit modes that extends beyond the nearest neighbor. We present a general formalism describing the formation of this coupling and calculate it for a one-dimensional chain of transmons. We show that the strength of coupling and its range (that is, the exponential falloff) can be tuned independently via circuit design to realize a continuum from nearest-neighbor-only interactions to interactions that extend across the length of the chain. We present designs with capacitance and microwave simulations showing that various interaction configurations can be achieved in realistic circuits. Such coupling could be used in analog simulation of different quantum regimes or to increase connectivity in digital quantum systems. Thus mechanism must also be taken into account in other types of qubits with extraneous modes.

Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. We study the dielectric loss of hexagonal boron nitride(hBN) thin films in the microwave regime by measuring the quality factor of parallel-plate capacitors (PPCs) made of NbSe2-hBN-NbSe2 heterostructures integrated into superconducting circuits. The extracted microwave loss tangent of hBN is bounded to be at most in the mid-10-6 range in the low temperature, single-photon regime. We integrate hBN PPCs with aluminum Josephson junctions to realize transmon qubits with coherence times reaching 25 μs, consistent with the hBN loss tangent inferred from resonator measurements. The hBN PPC reduces the qubit feature size by approximately two-orders of magnitude compared to conventional all-aluminum coplanar transmons. Our results establish hBN as a promising dielectric for building high-coherence quantum circuits with substantially reduced footprint and, with a high energy participation that helps to reduce unwanted qubit cross-talk.

Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a modelutilizes simultaneous, high-fidelity control and readout of each lattice site in a highly coherent quantum system. Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable 3×3 array of superconducting qubits. We probe the propagation of entanglement throughout the lattice and extract the degree of localization in the Anderson and Wannier-Stark regimes in the presence of site-tunable disorder strengths and gradients. Our results are in quantitative agreement with numerical simulations and match theoretical predictions based on the tight-binding model. The demonstrated level of experimental control and accuracy in extracting the system observables of interest will enable the exploration of larger, interacting lattices where numerical simulations become intractable.

We introduce CircuitQ, an open-source toolbox for the analysis of superconducting circuits implemented in Python. It features the automated construction of a symbolic Hamiltonian ofthe input circuit, as well as a dynamic numerical representation of this Hamiltonian with a variable basis choice. Additional features include the estimation of the T1 lifetimes of the circuit states under various noise mechanisms. We review previously established circuit quantization methods and formulate them in a way that facilitates the software implementation. The toolbox is then showcased by applying it to practically relevant qubit circuits and comparing it to specialized circuit solvers. Our circuit quantization is both applicable to circuit inputs from a large design space and the software is open-sourced. We thereby add an important toolbox for the design of new quantum circuits for quantum information processing applications.

As progress is made towards the first generation of error-corrected quantum computers, careful characterization of a processor’s noise environment will be crucial to designingtailored, low-overhead error correction protocols. While standard coherence metrics and characterization protocols such as T1 and T2, process tomography, and randomized benchmarking are now ubiquitous, these techniques provide only partial information about the dynamic multi-qubit loss channels responsible for processor errors, which can be described more fully by a Lindblad operator in the master equation formalism. Here, we introduce and experimentally demonstrate Lindblad Tomography, a hardware-agnostic characterization protocol for tomographically reconstructing the Hamiltonian and Lindblad operators of a quantum channel from an ensemble of time-domain measurements. Performing Lindblad Tomography on a small superconducting quantum processor, we show that this technique characterizes and accounts for state-preparation and measurement (SPAM) errors and allows one to place strong bounds on the degree of non-Markovianity in the channels of interest. Comparing the results of single- and two-qubit measurements on a superconducting quantum processor, we demonstrate that Lindblad Tomography can also be used to identify and quantify sources of crosstalk on quantum processors, such as the presence of always-on qubit-qubit interactions.