It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not seen withexisting platforms. In particular, access to a gate set that includes support for the CZ-type, the iSWAP-type, and the SWAP-type families of gates, renders conversions between these gate families unnecessary during compilation as any two-qubit Clifford gate can be executed using at most one two-qubit gate from this set, plus additional single-qubit gates. We experimentally demonstrate that a SWAP gate can be decomposed into one iSWAP gate followed by one CZ gate, affirming a more efficient compilation strategy over the conventional approach that relies on three iSWAP or three CZ gates to replace a SWAP gate. Our implementation makes use of a superconducting quantum processor design based on fixed-frequency transmon qubits coupled together by a parametrically modulated tunable transmon coupler, extending this platform’s native gate set so that any two-qubit Clifford unitary matrix can be realized using no more than two two-qubit gates and single-qubit gates.
While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in thepresence of gate errors, especially those due to decoherence. Using superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a „firmware“ upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family of operations, creating flexibility in quantum-circuit compilation. We demonstrate a gate fidelity of 97.90%, which is near the coherence limit of our device. We then generate two classes of entangled states, the GHZ and W states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –that are bump-bonded together. We demonstrate time-averaged coherence times exceeding 90μs, single-qubit gate fidelities exceeding 99.9%, and two-qubit gate fidelities above 98.6%. We also present device design methods and discuss the sensitivity of device parameters to variation in interchip spacing. Notably, the additional flip-chip fabrication steps do not degrade the qubit performance compared to our baseline state-of-the-art in single-chip, planar circuits. This integration technique can be extended to the realisation of quantum processors accommodating hundreds of qubits in one module as it offers adequate input/output wiring access to all qubits and couplers.