Quantum SWAP gate realized with CZ and iSWAP gates in a superconducting architecture

  1. Christian Križan,
  2. Janka Biznárová,
  3. Liangyu Chen,
  4. Emil Hogedal,
  5. Amr Osman,
  6. Christopher W. Warren,
  7. Sandoko Kosen,
  8. Hang-Xi Li,
  9. Tahereh Abad,
  10. Anuj Aggarwal,
  11. Marco Caputo,
  12. Jorge Fernández-Pendás,
  13. Akshay Gaikwad,
  14. Leif Grönberg,
  15. Andreas Nylander,
  16. Robert Rehammar,
  17. Marcus Rommel,
  18. Olga I. Yuzephovich,
  19. Anton Frisk Kockum,
  20. Joonas Govenius,
  21. Giovanna Tancredi,
  22. and Jonas Bylander
It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not seen with

Signal crosstalk in a flip-chip quantum processor

  1. Sandoko Kosen,
  2. Hang-Xi Li,
  3. Marcus Rommel,
  4. Robert Rehammar,
  5. Marco Caputo,
  6. Leif Grönberg,
  7. Jorge Fernández-Pendás,
  8. Anton Frisk Kockum,
  9. Janka Biznárová,
  10. Liangyu Chen,
  11. Christian Križan,
  12. Andreas Nylander,
  13. Amr Osman,
  14. Anita Fadavi Roudsari,
  15. Daryoush Shiri,
  16. Giovanna Tancredi,
  17. Joonas Govenius,
  18. and Jonas Bylander
Quantum processors require a signal-delivery architecture with high addressability (low crosstalk) to ensure high performance already at the scale of dozens of qubits. Signal crosstalk

Characterization of process-related interfacial dielectric loss in aluminum-on-silicon by resonator microwave measurements, materials analysis, and imaging

  1. Lert Chayanun,
  2. Janka Biznárová,
  3. Lunjie Zeng,
  4. Per Malmberg,
  5. Andreas Nylander,
  6. Amr Osman,
  7. Marcus Rommel,
  8. Pui Lam Tam,
  9. Eva Olsson,
  10. August Yurgens,
  11. Jonas Bylander,
  12. and Anita Fadavi Roudsari
We systematically investigate the influence of the fabrication process on dielectric loss in aluminum-on-silicon superconducting coplanar waveguide resonators with internal quality

Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits

  1. Janka Biznárová,
  2. Amr Osman,
  3. Emil Rehnman,
  4. Lert Chayanun,
  5. Christian Križan,
  6. Per Malmberg,
  7. Marcus Rommel,
  8. Christopher Warren,
  9. Per Delsing,
  10. August Yurgens,
  11. Jonas Bylander,
  12. and Anita Fadavi Roudsari
We demonstrate aluminum-on-silicon planar transmon qubits with time-averaged T1 energy relaxation times of up to 270μs, corresponding to Q = 5 million, and a highest observed value

Mitigation of frequency collisions in superconducting quantum processors

  1. Amr Osman,
  2. Jorge Fernàndez-Pendàs,
  3. Chris Warren,
  4. Sandoko Kosen,
  5. Marco Scigliuzzo,
  6. Anton Frisk Kockum,
  7. Giovanna Tancredi,
  8. Anita Fadavi Roudsari,
  9. and Jonas Bylander
The reproducibility of qubit parameters is a challenge for scaling up superconducting quantum processors. Signal crosstalk imposes constraints on the frequency separation between neighboring

Three-wave mixing traveling-wave parametric amplifier with periodic variation of the circuit parameters

  1. Anita Fadavi Roudsari,
  2. Daryoush Shiri,
  3. Hampus Renberg Nilsson,
  4. Giovanna Tancredi,
  5. Amr Osman,
  6. Ida-Maria Svensson,
  7. Marina Kudra,
  8. Marcus Rommel,
  9. Jonas Bylander,
  10. Vitaly Shumeiko,
  11. and Per Delsing
We report the implementation of a near-quantum-limited, traveling-wave parametric amplifier that uses three-wave mixing (3WM). To favor amplification by 3WM, we use the superconducting

Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier

  1. Liangyu Chen,
  2. Hang-Xi Li,
  3. Yong Lu,
  4. Christopher W. Warren,
  5. Christian J. Križan,
  6. Sandoko Kosen,
  7. Marcus Rommel,
  8. Shahnawaz Ahmed,
  9. Amr Osman,
  10. Janka Biznárová,
  11. Anita Fadavi Roudsari,
  12. Benjamin Lienhard,
  13. Marco Caputo,
  14. Kestutis Grigoras,
  15. Leif Grönberg,
  16. Joonas Govenius,
  17. Anton Frisk Kockum,
  18. Per Delsing,
  19. Jonas Bylander,
  20. and Giovanna Tancredi
High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme for

Extensive characterization of a family of efficient three-qubit gates at the coherence limit

  1. Christopher W. Warren,
  2. Jorge Fernández-Pendás,
  3. Shahnawaz Ahmed,
  4. Tahereh Abad,
  5. Andreas Bengtsson,
  6. Janka Biznárová,
  7. Kamanasish Debnath,
  8. Xiu Gu,
  9. Christian Križan,
  10. Amr Osman,
  11. Anita Fadavi Roudsari,
  12. Per Delsing,
  13. Göran Johansson,
  14. Anton Frisk Kockum,
  15. Giovanna Tancredi,
  16. and Jonas Bylander
While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in the

Engineering symmetry-selective couplings of a superconducting artificial molecule to microwave waveguides

  1. Mohammed Ali Aamir,
  2. Claudia Castillo Moreno,
  3. Simon Sundelin,
  4. Janka Biznárová,
  5. Marco Scigliuzzo,
  6. Kowshik Erappaji Patel,
  7. Amr Osman,
  8. D. P. Lozano,
  9. and Simone Gasparinetti
Tailoring the decay rate of structured quantum emitters into their environment opens new avenues for nonlinear quantum optics, collective phenomena, and quantum communications. Here

Building Blocks of a Flip-Chip Integrated Superconducting Quantum Processor

  1. Sandoko Kosen,
  2. Hang-Xi Li,
  3. Marcus Rommel,
  4. Daryoush Shiri,
  5. Christopher Warren,
  6. Leif Grönberg,
  7. Jaakko Salonen,
  8. Tahereh Abad,
  9. Janka Biznárová,
  10. Marco Caputo,
  11. Liangyu Chen,
  12. Kestutis Grigoras,
  13. Göran Johansson,
  14. Anton Frisk Kockum,
  15. Christian Križan,
  16. Daniel Pérez Lozano,
  17. Graham Norris,
  18. Amr Osman,
  19. Jorge Fernández-Pendás,
  20. Anita Fadavi Roudsari,
  21. Giovanna Tancredi,
  22. Andreas Wallraff,
  23. Christopher Eichler,
  24. Joonas Govenius,
  25. and Jonas Bylander
We have integrated single and coupled superconducting transmon qubits into flip-chip modules. Each module consists of two chips – one quantum chip and one control chip –