Evolution of 1/f Flux Noise in Superconducting Qubits with Weak Magnetic Fields

  1. David A. Rower,
  2. Lamia Ateshian,
  3. Lauren H. Li,
  4. Max Hays,
  5. Dolev Bluvstein,
  6. Leon Ding,
  7. Bharath Kannan,
  8. Aziza Almanakly,
  9. Jochen Braumüller,
  10. David K. Kim,
  11. Alexander Melville,
  12. Bethany M. Niedzielski,
  13. Mollie E. Schwartz,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Joel I-Jan Wang,
  17. Simon Gustavsson,
  18. Jeffrey A. Grover,
  19. Kyle Serniak,
  20. Riccardo Comin,
  21. and William D. Oliver
The microscopic origin of 1/f magnetic flux noise in superconducting circuits has remained an open question for several decades despite extensive experimental and theoretical investigation.
Recent progress in superconducting devices for quantum information has highlighted the need to mitigate sources of qubit decoherence, driving a renewed interest in understanding the underlying noise mechanism(s). Though a consensus has emerged attributing flux noise to surface spins, their identity and interaction mechanisms remain unclear, prompting further study. Here we apply weak in-plane magnetic fields to a capacitively-shunted flux qubit (where the Zeeman splitting of surface spins lies below the device temperature) and study the flux-noise-limited qubit dephasing, revealing previously unexplored trends that may shed light on the dynamics behind the emergent 1/f noise. Notably, we observe an enhancement (suppression) of the spin-echo (Ramsey) pure dephasing time in fields up to B=100 G. With direct noise spectroscopy, we further observe a transition from a 1/f to approximately Lorentzian frequency dependence below 10 Hz and a reduction of the noise above 1 MHz with increasing magnetic field. We suggest that these trends are qualitatively consistent with an increase of spin cluster sizes with magnetic field. These results should help to inform a complete microscopic theory of 1/f flux noise in superconducting circuits.

Demonstration of tunable three-body interactions between superconducting qubits

  1. Tim Menke,
  2. William P. Banner,
  3. Thomas R. Bergamaschi,
  4. Agustin Di Paolo,
  5. Antti Vepsäläinen,
  6. Steven J. Weber,
  7. Roni Winik,
  8. Alexander Melville,
  9. Bethany M. Niedzielski,
  10. Danna Rosenberg,
  11. Kyle Serniak,
  12. Mollie E. Schwartz,
  13. Jonilyn L. Yoder,
  14. Alán Aspuru-Guzik,
  15. Simon Gustavsson,
  16. Jeffrey A. Grover,
  17. Cyrus F. Hirjibehedin,
  18. Andrew J. Kerman,
  19. and William D. Oliver
Nonpairwise multi-qubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of molecules
and combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here we present a superconducting circuit architecture in which a coupling module mediates 2-local and 3-local interactions between three flux qubits by design. The system Hamiltonian is estimated via multi-qubit pulse sequences that implement Ramsey-type interferometry between all neighboring excitation manifolds in the system. The 3-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off, which is important for applications in quantum annealing, analog quantum simulation, and gate-model quantum computation.

On-Demand Directional Photon Emission using Waveguide Quantum Electrodynamics

  1. Bharath Kannan,
  2. Aziza Almanakly,
  3. Youngkyu Sung,
  4. Agustin Di Paolo,
  5. David A. Rower,
  6. Jochen Braumüller,
  7. Alexander Melville,
  8. Bethany M. Niedzielski,
  9. Amir Karamlou,
  10. Kyle Serniak,
  11. Antti Vepsäläinen,
  12. Mollie E. Schwartz,
  13. Jonilyn L. Yoder,
  14. Roni Winik,
  15. Joel I-Jan Wang,
  16. Terry P. Orlando,
  17. Simon Gustavsson,
  18. Jeffrey A. Grover,
  19. and William D. Oliver
Routing quantum information between non-local computational nodes is a foundation for extensible networks of quantum processors. Quantum information can be transferred between arbitrary
nodes by photons that propagate between them, or by resonantly coupling nearby nodes. Notably, conventional approaches involving propagating photons have limited fidelity due to photon loss and are often unidirectional, whereas architectures that use direct resonant coupling are bidirectional in principle, but can generally accommodate only a few local nodes. Here, we demonstrate high-fidelity, on-demand, bidirectional photon emission using an artificial molecule comprising two superconducting qubits strongly coupled to a waveguide. Quantum interference between the photon emission pathways from the molecule generate single photons that selectively propagate in a chosen direction. This architecture is capable of both photon emission and capture, and can be tiled in series to form an extensible network of quantum processors with all-to-all connectivity.

Lindblad Tomography of a Superconducting Quantum Processor

  1. Gabriel O. Samach,
  2. Ami Greene,
  3. Johannes Borregaard,
  4. Matthias Christandl,
  5. David K. Kim,
  6. Christopher M. McNally,
  7. Alexander Melville,
  8. Bethany M. Niedzielski,
  9. Youngkyu Sung,
  10. Danna Rosenberg,
  11. Mollie E. Schwartz,
  12. Jonilyn L. Yoder,
  13. Terry P. Orlando,
  14. Joel I-Jan Wang,
  15. Simon Gustavsson,
  16. Morten Kjaergaard,
  17. and William D. Oliver
As progress is made towards the first generation of error-corrected quantum computers, careful characterization of a processor’s noise environment will be crucial to designing
tailored, low-overhead error correction protocols. While standard coherence metrics and characterization protocols such as T1 and T2, process tomography, and randomized benchmarking are now ubiquitous, these techniques provide only partial information about the dynamic multi-qubit loss channels responsible for processor errors, which can be described more fully by a Lindblad operator in the master equation formalism. Here, we introduce and experimentally demonstrate Lindblad Tomography, a hardware-agnostic characterization protocol for tomographically reconstructing the Hamiltonian and Lindblad operators of a quantum channel from an ensemble of time-domain measurements. Performing Lindblad Tomography on a small superconducting quantum processor, we show that this technique characterizes and accounts for state-preparation and measurement (SPAM) errors and allows one to place strong bounds on the degree of non-Markovianity in the channels of interest. Comparing the results of single- and two-qubit measurements on a superconducting quantum processor, we demonstrate that Lindblad Tomography can also be used to identify and quantify sources of crosstalk on quantum processors, such as the presence of always-on qubit-qubit interactions.

Realization of high-fidelity CZ and ZZ-free iSWAP gates with a tunable coupler

  1. Youngkyu Sung,
  2. Leon Ding,
  3. Jochen Braumüller,
  4. Antti Vepsäläinen,
  5. Bharath Kannan,
  6. Morten Kjaergaard,
  7. Ami Greene,
  8. Gabriel O. Samach,
  9. Chris McNally,
  10. David Kim,
  11. Alexander Melville,
  12. Bethany M. Niedzielski,
  13. Mollie E. Schwartz,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Simon Gustavsson,
  17. and William D. Oliver
High-fidelity two-qubit gates at scale are a key requirement to realize the full promise of quantum computation and simulation. The advent and use of coupler elements to tunably control
two-qubit interactions has improved operational fidelity in many-qubit systems by reducing parasitic coupling and frequency crowding issues. However, two-qubit gate errors still limit the capability of near-term quantum applications. In particular, the existing framework for tunable couplers based on the dispersive approximation does not fully incorporate three-body multi-level dynamics, which are essential for addressing coherent leakage to the coupler and parasitic longitudinal (ZZ) interactions during two-qubit gates. Here, we present a new systematic approach that goes beyond the dispersive approximation and outlines how to optimize the coupler-control and exploit the engineered level structure of the coupler. Using this approach, we experimentally demonstrate a CZ gate with 99.76 ± 0.10 % fidelity and a ZZ-free iSWAP gate with 99.86 ± 0.32 % fidelity, which are close to their T1 limits.

Multi-level Quantum Noise Spectroscopy

  1. Youngkyu Sung,
  2. Antti Vepsäläinen,
  3. Jochen Braumüller,
  4. Fei Yan,
  5. Joel I-Jan Wang,
  6. Morten Kjaergaard,
  7. Roni Winik,
  8. Philip Krantz,
  9. Andreas Bengtsson,
  10. Alexander J. Melville,
  11. Bethany M. Niedzielski,
  12. Mollie E. Schwartz,
  13. David K. Kim,
  14. Jonilyn L. Yoder,
  15. Terry P. Orlando,
  16. Simon Gustavsson,
  17. and William D. Oliver
System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise
affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.

Solid-state qubits integrated with superconducting through-silicon vias

  1. Donna-Ruth W. Yost,
  2. Mollie E. Schwartz,
  3. Justin Mallek,
  4. Danna Rosenberg,
  5. Corey Stull,
  6. Jonilyn L. Yoder,
  7. Greg Calusine,
  8. Matt Cook,
  9. Rabi Das,
  10. Alexandra L. Day,
  11. Evan B. Golden,
  12. David K. Kim,
  13. Alexander Melville,
  14. Bethany M. Niedzielski,
  15. Wayne Woods,
  16. Andrew J. Kerman,
  17. and Willam D. Oliver
As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require,
access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays — provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs — 10 μm wide by 20 μm long by 200 μm deep — with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.

Silicon Hard-Stop Spacers for 3D Integration of Superconducting Qubits

  1. Bethany M. Niedzielski,
  2. David K. Kim,
  3. Mollie E. Schwartz,
  4. Danna Rosenberg,
  5. Greg Calusine,
  6. Rabi Das,
  7. Alexander J. Melville,
  8. Jason Plant,
  9. Livia Racz,
  10. Jonilyn L. Yoder,
  11. Donna Ruth-Yost,
  12. and William D. Oliver
As designs for superconducting qubits become more complex, 3D integration of two or more vertically bonded chips will become necessary to enable increased density and connectivity.
Precise control of the spacing between these chips is required for accurate prediction of circuit performance. In this paper, we demonstrate an improvement in the planarity of bonded superconducting qubit chips while retaining device performance by utilizing hard-stop silicon spacer posts. These silicon spacers are defined by etching several microns into a silicon substrate and are compatible with 3D-integrated qubit fabrication. This includes fabrication of Josephson junctions, superconducting air-bridge crossovers, underbump metallization and indium bumps. To qualify the integrated process, we demonstrate high-quality factor resonators on the etched surface and measure qubit coherence (T1, T2,echo > 40 {\mu}s) in the presence of silicon posts as near as 350 {\mu}m to the qubit.

Superconducting Qubits: Current State of Play

  1. Morten Kjaergaard,
  2. Mollie E. Schwartz,
  3. Jochen Braumüller,
  4. Philip Krantz,
  5. Joel I-Jan Wang,
  6. Simon Gustavsson,
  7. and William D. Oliver
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconducting
qubit modality has been used to demonstrate prototype algorithms in the `noisy intermediate scale quantum‘ (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impressive, and here we hope to convey the excitement stemming from this progress.

Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits

  1. Nicolas Roch,
  2. Mollie E. Schwartz,
  3. Felix Motzoi,
  4. Christopher Macklin,
  5. Rajamani Vijay,
  6. Andrew W. Eddins,
  7. Alexander N. Korotkov,
  8. K. Birgitta Whaley,
  9. Mohan Sarovar,
  10. and Irfan Siddiqi
The creation of a quantum network requires the distribution of coherent information across macroscopic distances. We demonstrate the entanglement of two superconducting qubits, separated
by more than a meter of coaxial cable, by designing a joint measurement that probabilistically projects onto an entangled state. By using a continuous measurement scheme, we are further able to observe single quantum trajectories of the joint two-qubit state, confirming the validity of the quantum Bayesian formalism for a cascaded system. Our results allow us to resolve the dynamics of continuous projection onto the entangled manifold, in quantitative agreement with theory.