It is advantageous for any quantum processor to support different classes of two-qubit quantum logic gates when compiling quantum circuits, a property that is typically not seen withexisting platforms. In particular, access to a gate set that includes support for the CZ-type, the iSWAP-type, and the SWAP-type families of gates, renders conversions between these gate families unnecessary during compilation as any two-qubit Clifford gate can be executed using at most one two-qubit gate from this set, plus additional single-qubit gates. We experimentally demonstrate that a SWAP gate can be decomposed into one iSWAP gate followed by one CZ gate, affirming a more efficient compilation strategy over the conventional approach that relies on three iSWAP or three CZ gates to replace a SWAP gate. Our implementation makes use of a superconducting quantum processor design based on fixed-frequency transmon qubits coupled together by a parametrically modulated tunable transmon coupler, extending this platform’s native gate set so that any two-qubit Clifford unitary matrix can be realized using no more than two two-qubit gates and single-qubit gates.
High-fidelity and rapid readout of a qubit state is key to quantum computing and communication, and it is a prerequisite for quantum error correction. We present a readout scheme forsuperconducting qubits that combines two microwave techniques: applying a shelving technique to the qubit that effectively increases the energy-relaxation time, and a two-tone excitation of the readout resonator to distinguish among qubit populations in higher energy levels. Using a machine-learning algorithm to post-process the two-tone measurement results further improves the qubit-state assignment fidelity. We perform single-shot frequency-multiplexed qubit readout, with a 140ns readout time, and demonstrate 99.5% assignment fidelity for two-state readout and 96.9% for three-state readout – without using a quantum-limited amplifier.
While all quantum algorithms can be expressed in terms of single-qubit and two-qubit gates, more expressive gate sets can help reduce the algorithmic depth. This is important in thepresence of gate errors, especially those due to decoherence. Using superconducting qubits, we have implemented a three-qubit gate by simultaneously applying two-qubit operations, thereby realizing a three-body interaction. This method straightforwardly extends to other quantum hardware architectures, requires only a „firmware“ upgrade to implement, and is faster than its constituent two-qubit gates. The three-qubit gate represents an entire family of operations, creating flexibility in quantum-circuit compilation. We demonstrate a gate fidelity of 97.90%, which is near the coherence limit of our device. We then generate two classes of entangled states, the GHZ and W states, by applying the new gate only once; in comparison, decompositions into the standard gate set would have a two-qubit gate depth of two and three, respectively. Finally, we combine characterization methods and analyze the experimental and statistical errors on the fidelity of the gates and of the target states.