Nonpairwise multi-qubit interactions present a useful resource for quantum information processors. Their implementation would facilitate more efficient quantum simulations of moleculesand combinatorial optimization problems, and they could simplify error suppression and error correction schemes. Here we present a superconducting circuit architecture in which a coupling module mediates 2-local and 3-local interactions between three flux qubits by design. The system Hamiltonian is estimated via multi-qubit pulse sequences that implement Ramsey-type interferometry between all neighboring excitation manifolds in the system. The 3-local interaction is coherently tunable over several MHz via the coupler flux biases and can be turned off, which is important for applications in quantum annealing, analog quantum simulation, and gate-model quantum computation.
Multi-spin interactions can be engineered with artificial quantum spins. However, it is challenging to verify such interactions experimentally. Here we describe two methods to characterizethe n-local coupling of n spins. First, we analyze the variation of the transition energy of the static system as a function of local spin fields. Standard measurement techniques are employed to distinguish n-local interactions between up to five spins from lower-order contributions in the presence of noise and spurious fields and couplings. Second, we show a detection technique that relies on time dependent driving of the coupling term. Generalizations to larger system sizes are analyzed for both static and dynamic detection methods, and we find that the dynamic method is asymptotically optimal when increasing the system size. The proposed methods enable robust exploration of multi-spin interactions across a broad range of both coupling strengths and qubit modalities.
Spin chains have long been considered an effective medium for long-range interactions, entanglement generation, and quantum state transfer. In this work, we explore the properties ofa spin chain implemented with superconducting flux circuits, designed to act as a connectivity medium between two superconducting qubits. The susceptibility of the chain is probed and shown to support long-range, cross chain correlations. In addition, interactions between the two end qubits, mediated by the coupler chain, are demonstrated. This work has direct applicability in near term quantum annealing processors as a means of generating long-range, coherent coupling between qubits.
Increasing circuit complexity within quantum systems based on superconducting qubits necessitates high connectivity while retaining qubit coherence. Classical micro-electronic systemshave addressed interconnect density challenges by using 3D integration with interposers containing through-silicon vias (TSVs), but extending these integration techniques to superconducting quantum systems is challenging. Here, we discuss our approach for realizing high-aspect-ratio superconducting TSVs\textemdash 10 μm wide by 20 μm long by 200 μm deep\textemdash with densities of 100 electrically isolated TSVs per square millimeter. We characterize the DC and microwave performance of superconducting TSVs at cryogenic temperatures and demonstrate superconducting critical currents greater than 20 mA. These high-aspect-ratio, high critical current superconducting TSVs will enable high-density vertical signal routing within superconducting quantum processors.
Building on the established methods for superconducting circuit quantization, we present a new theoretical framework for approximate numerical simulation of Josephson quantum circuits.Simulations based on this framework provide access to a degree of complexity and circuit size heretofore inaccessible to quantitative analysis, including fundamentally new kinds of superconducting quantum devices. This capability is made possible by two improvements over previous methods: first, physically-motivated choices for the canonical circuit modes and physical basis states which allow a highly-efficient matrix representation; and second, an iterative method in which subsystems are diagonalized separately and then coupled together, at increasing size scales with each iteration, allowing diagonalization of Hamiltonians in extremely large Hilbert spaces to be approximated using a sequence of diagonalizations in much smaller spaces.
As superconducting qubit circuits become more complex, addressing a large array of qubits becomes a challenging engineering problem. Dense arrays of qubits benefit from, and may require,access via the third dimension to alleviate interconnect crowding. Through-silicon vias (TSVs) represent a promising approach to three-dimensional (3D) integration in superconducting qubit arrays — provided they are compact enough to support densely-packed qubit systems without compromising qubit performance or low-loss signal and control routing. In this work, we demonstrate the integration of superconducting, high-aspect ratio TSVs — 10 μm wide by 20 μm long by 200 μm deep — with superconducting qubits. We utilize TSVs for baseband control and high-fidelity microwave readout of qubits using a two-chip, bump-bonded architecture. We also validate the fabrication of qubits directly upon the surface of a TSV-integrated chip. These key 3D integration milestones pave the way for the control and readout of high-density superconducting qubit arrays using superconducting TSVs.
Superconducting circuits have emerged as a promising platform to build quantum processors. The challenge of designing a circuit is to compromise between realizing a set of performancemetrics and reducing circuit complexity and noise sensitivity. At the same time, one needs to explore a large design space, and computational approaches often yield long simulation times. Here we automate the circuit design task using SCILLA, a software for automated discovery of superconducting circuits. SCILLA performs a parallelized, closed-loop optimization to design circuit diagrams that match pre-defined properties such as spectral features and noise sensitivities. We employ it to discover 4-local couplers for superconducting flux qubits and identify a circuit that outperforms an existing proposal with similar circuit structure in terms of coupling strength and noise resilience for experimentally accessible parameters. This work demonstrates how automated discovery can facilitate the design of complex circuit architectures for quantum information processing.
We propose a superconducting qubit circuit that can fully emulate a quantum vector spin-1/2, having three independent physical dipole moments whose operators obey the commutation relationsof a vector angular momentum in the computational subspace. Each dipole moment couples to an independently-controllable external bias, emulating the Zeeman effect due to a fictitious, three-component vector magnetic field, and all three of these moments remain relatively constant over a broad range of emulated total fields around zero. This capability, combined with established techniques for two-qubit coupling, would enable for the first time the direct hardware emulation of nearly arbitrary quantum spin-1/2 systems, including the canonical Heisenberg model. In addition to its fundamental interest in condensed-matter physics, this would also constitute a crucial step towards important quantum information processing and quantum annealing capabilities that have so far been inaccessible to any available hardware. These include, for example, strong non-stoquastic interactions for quantum annealing, quantum error suppression, Hamiltonian and holonomic quantum computing, and adiabatic quantum chemistry.
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a varietyof sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra.
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting fluxqubits with short coherence times, limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach, using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (∼50 nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.