A tunable coupling scheme for implementing high-fidelity two-qubit gates

  1. Fei Yan,
  2. Philip Krantz,
  3. Youngkyu Sung,
  4. Morten Kjaergaard,
  5. Dan Campbell,
  6. Joel I.J. Wang,
  7. Terry P. Orlando,
  8. Simon Gustavsson,
  9. and William D. Oliver
The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving
scalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies.

Distinguishing coherent and thermal photon noise in a circuit QED system

  1. Fei Yan,
  2. Dan Campbell,
  3. Philip Krantz,
  4. Morten Kjaergaard,
  5. David Kim,
  6. Jonilyn L. Yoder,
  7. David Hover,
  8. Adam Sears,
  9. Andrew J. Kerman,
  10. Terry P. Orlando,
  11. Simon Gustavsson,
  12. and William D. Oliver
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety
of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra.