Engineering high-fidelity two-qubit gates is an indispensable step toward practical quantum computing. For superconducting quantum platforms, one important setback is the stray interactionbetween qubits, which causes significant coherent errors. For transmon qubits, protocols for mitigating such errors usually involve fine-tuning the hardware parameters or introducing usually noisy flux-tunable couplers. In this work, we propose a simple scheme to cancel these stray interactions. The coupler used for such cancellation is a driven high-coherence resonator, where the amplitude and frequency of the drive serve as control knobs. Through the resonator-induced-phase (RIP) interaction, the static ZZ coupling can be entirely neutralized. We numerically show that such a scheme can enable short and high-fidelity entangling gates, including cross-resonance CNOT gates within 40 ns and adiabatic CZ gates within 140 ns. Our architecture is not only ZZ free but also contains no extra noisy components, such that it preserves the coherence times of fixed-frequency transmon qubits. With the state-of-the-art coherence times, the error of our cross-resonance CNOT gate can be reduced to below 1e-4.
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is todesign a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approachfor implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels. We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions, preventing converter-induced decoherence. We demonstrate these principles using a differentially-driven DC-SQUID as our converter, coupled to two high-Q microwave cavities. Using this architecture, we engineer a highly-coherent beamsplitter and fast (∼ 100 ns) swaps between the cavities, limited primarily by their intrinsic single-photon loss. We characterize this beamsplitter in the cavities‘ joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate fidelity exceeding 99.98%, which to our knowledge far surpasses the current state of the art.
The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computations. To this end, we introducethe circuit-QED dual-rail qubit in which our physical qubit is encoded in the single-photon subspace of two superconducting cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are much easier to correct. In contrast to linear optics, a circuit-QED implementation of the dual-rail code offers completely new capabilities. Using a single transmon ancilla, we describe a universal gate set that includes state preparation, logical readout, and parametrizable single and two-qubit gates. Moreover, first-order hardware errors due to the cavity and transmon in all of these operations can be detected and converted to erasure errors, leaving background Pauli errors that are orders of magnitude smaller. Hence, the dual-rail cavity qubit delivers an optimal hierarchy of errors and rates, and is expected to be well below the relevant QEC thresholds with today’s devices.
The extit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustrationpoint. However, the suppressed charge matrix elements and low transition frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with 97\% fidelity, corresponding to cooling it to 190 μK. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with T1,T2e∼~300~μs, we realize single-qubit gates in 20−60~ns with an average gate fidelity of 99.8% as characterized by randomized benchmarking.
We theoretically analyze a scheme for fast stabilization of arbitrary qubit states with high fidelities, extending a protocol recently demonstrated experimentally. Our scheme utilizedred and blue sideband transitions in a system composed of a fluxonium qubit, a low-Q LC-oscillator, and a coupler enabling us to tune the interaction between them. Under parametric modulations of the coupling strength, the qubit can be steered into any desired pure or mixed single-qubit state. For realistic circuit parameters, we predict that stabilization can be achieved within 100 ns. By varying the ratio between the oscillator’s damping rate and the effective qubit-oscillator coupling strength, we can switch between under-damped, critically-damped, and over-damped stabilization and find optimal working points. We further analyze the effect of thermal fluctuations and show that the stabilization scheme remains robust for realistic temperatures.
We autonomously stabilize arbitrary states of a qubit through parametric modulation of the coupling between a fixed frequency qubit and resonator. The coupling modulation is achievedwith a tunable coupler design, in which the qubit and the resonator are connected in parallel to a superconducting quantum interference device. This allows for quasi-static tuning of the qubit-cavity coupling strength from 12 MHz to more than 300 MHz. Additionally, the coupling can be dynamically modulated, allowing for single photon exchange in 6 ns. Qubit coherence times exceeding 20 μs are maintained over the majority of the range of tuning, limited primarily by the Purcell effect. The parametric stabilization technique realized using the tunable coupler involves engineering the qubit bath through a combination of photon non-conserving sideband interactions realized by flux modulation, and direct qubit Rabi driving. We demonstrate that the qubit can be stabilized to arbitrary states on the Bloch sphere with a worst-case fidelity exceeding 80 %.
We realize a Λ system in a superconducting circuit, with metastable states exhibiting lifetimes up to 7ms. We exponentially suppress the tunneling matrix elements involved in spontaneousenergy relaxation by creating a „heavy“ fluxonium, realized by adding a capacitive shunt to the original circuit design. The device allows for both cavity-assisted and direct fluorescent readout, as well as state preparation schemes akin to optical pumping. Since direct transitions between the metastable states are strongly suppressed, we utilize Raman transitions for coherent manipulation of the states.