Designing high-fidelity two-qubit gates between fluxonium qubits

  1. Emma L. Rosenfeld,
  2. Connor T. Hann,
  3. David I. Schuster,
  4. Matthew H. Matheny,
  5. and Aashish A. Clerk
We take a bottom-up, first-principles approach to design a two-qubit gate between fluxonium qubits for minimal error, speed, and control simplicity. Our proposed architecture consists
of two fluxoniums coupled via a linear resonator. Using a linear coupler introduces the possibility of material optimization for suppressing its loss, enables efficient driving of state-selective transitions through its large charge zero point fluctuation, reduces sensitivity to junction aging, and partially mitigates coherent coupling to two-level systems. Crucially, a resonator-as-coupler approach also suggests a clear path to increased connectivity between fluxonium qubits, by reducing capacitive loading when the coupler has a high impedance. After performing analytic and numeric analyses of the circuit Hamiltonian and gate dynamics, we tune circuit parameters to destructively interfere sources of coherent error, revealing an efficient, fourth-order scaling of coherent error with gate duration. For component properties from the literature, we predict an open-system average CZ gate infidelity of 1.86×10−4 in 70ns.

Niobium coaxial cavities with internal quality factors exceeding 1.5 billion for circuit quantum electrodynamics

  1. Andrew E. Oriani,
  2. Fang Zhao,
  3. Tanay Roy,
  4. Alexander Anferov,
  5. Kevin He,
  6. Ankur Agrawal,
  7. Riju Banerjee,
  8. Srivatsan Chakram,
  9. and David I. Schuster
Group-V materials such as niobium and tantalum have become popular choices for extending the performance of circuit quantum electrodynamics (cQED) platforms allowing for quantum processors
and memories with reduced error rates and more modes. The complex surface chemistry of niobium however makes identifying the main modes of decoherence difficult at millikelvin temperatures and single-photon powers. We use niobium coaxial quarter-wave cavities to study the impact of etch chemistry, prolonged atmospheric exposure, and the significance of cavity conditions prior to and during cooldown, in particular niobium hydride evolution, on single-photon coherence. We demonstrate cavities with quality factors of Qint≳1.4×109 in the single-photon regime, a 15 fold improvement over aluminum cavities of the same geometry. We rigorously quantify the sensitivity of our fabrication process to various loss mechanisms and demonstrate a 2−4× reduction in the two-level system (TLS) loss tangent and a 3−5× improvement in the residual resistivity over traditional BCP etching techniques. Finally, we demonstrate transmon integration and coherent cavity control while maintaining a cavity coherence of \SI{11.3}{ms}. The accessibility of our method, which can easily be replicated in academic-lab settings, and the demonstration of its performance mark an advancement in 3D cQED.

Superconducting Qubits Above 20 GHz Operating over 200 mK

  1. Alexander Anferov,
  2. Shannon P. Harvey,
  3. Fanghui Wan,
  4. Jonathan Simon,
  5. and David I. Schuster
Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantly
increase the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium trilayer junctions, which have reduced sensitivity to quasiparticles due to niobium’s higher superconducting transition temperature, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about 1 us, corresponding to average qubit quality factors of approximately 105, and find that decoherence is unaffected by quasiparticles up to 1 K. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately 250 mK while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat dissipation budgets, and introduces a material platform for even higher-frequency qubits.

Manybody Interferometry of Quantum Fluids

  1. Gabrielle Roberts,
  2. Andrei Vrajitoarea,
  3. Brendan Saxberg,
  4. Margaret G. Panetta,
  5. Jonathan Simon,
  6. and David I. Schuster
Characterizing strongly correlated matter is an increasingly central challenge in quantum science, where structure is often obscured by massive entanglement. From semiconductor heterostructures
and 2D materials to synthetic atomic, photonic and ionic quantum matter, progress in preparation of manybody quantum states is accelerating, opening the door to new approaches to state characterization. It is becoming increasingly clear that in the quantum regime, state preparation and characterization should not be treated separately – entangling the two processes provides a quantum advantage in information extraction. From Loschmidt echo to measure the effect of a perturbation, to out-of-time-order-correlators (OTOCs) to characterize scrambling and manybody localization, to impurity interferometry to measure topological invariants, and even quantum Fourier transform-enhanced sensing, protocols that blur the distinction between state preparation and characterization are becoming prevalent. Here we present a new approach which we term ‚manybody Ramsey interferometry‘ that combines adiabatic state preparation and Ramsey spectroscopy: leveraging our recently-developed one-to-one mapping between computational-basis states and manybody eigenstates, we prepare a superposition of manybody eigenstates controlled by the state of an ancilla qubit, allow the superposition to evolve relative phase, and then reverse the preparation protocol to disentangle the ancilla while localizing phase information back into it. Ancilla tomography then extracts information about the manybody eigenstates, the associated excitation spectrum, and thermodynamic observables. This work opens new avenues for characterizing manybody states, paving the way for quantum computers to efficiently probe quantum matter.

Tunable inductive coupler for high fidelity gates between fluxonium qubits

  1. Helin Zhang,
  2. Chunyang Ding,
  3. D. K. Weiss,
  4. Ziwen Huang,
  5. Yuwei Ma,
  6. Charles Guinn,
  7. Sara Sussman,
  8. Sai Pavan Chitta,
  9. Danyang Chen,
  10. Andrew A. Houck,
  11. Jens Koch,
  12. and David I. Schuster
The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductivecoupling between two heavy-fluxonium qubits, each with ∼50MHz frequencies and ∼5 GHz anharmonicities. The coupler enables the qubits to have a large tuning range of XX coupling strengths (−35 to 75 MHz). The ZZ coupling strength is <3kHz across the entire coupler bias range, and <100Hz at the coupler off-position. These qualities lead to fast, high-fidelity single- and two-qubit gates. By driving at the difference frequency of the two qubits, we realize a iSWAP‾‾‾‾‾‾‾√ gate in 258ns with fidelity 99.72%, and by driving at the sum frequency of the two qubits, we achieve a bSWAP‾‾‾‾‾‾‾‾√ gate in 102ns with fidelity 99.91%. This latter gate is only 5 qubit Larmor periods in length. We run cross-entropy benchmarking for over 20 consecutive hours and measure stable gate fidelities, with bSWAP‾‾‾‾‾‾‾‾√ drift (2σ) <0.02% and iSWAP‾‾‾‾‾‾‾√ drift <0.08%.[/expand]

Improved Coherence in Optically-Defined Niobium Trilayer Junction Qubits

  1. Alexander Anferov,
  2. Kan-Heng Lee,
  3. Fang Zhao,
  4. Jonathan Simon,
  5. and David I. Schuster
Niobium offers the benefit of increased operating temperatures and frequencies for Josephson junctions, which are the core component of superconducting devices. However existing niobium
processes are limited by more complicated fabrication methods and higher losses than now-standard aluminum junctions. Combining recent trilayer fabrication advancements, methods to remove lossy dielectrics and modern superconducting qubit design, we revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography. We characterize devices in the microwave domain, measuring coherence times up to 62 μs and an average qubit quality factor above 105: much closer to state-of-the-art aluminum-junction devices. We find the higher superconducting gap energy also results in reduced quasiparticle sensitivity above 0.16 K, where aluminum junction performance deteriorates. Our low-loss junction process is readily applied to standard optical-based foundry processes, opening new avenues for direct integration and scalability, and paves the way for higher-temperature and higher-frequency quantum devices.

Exploring Ququart Computation on a Transmon using Optimal Control

  1. Lennart Maximilian Seifert,
  2. Ziqian Li,
  3. Tanay Roy,
  4. David I. Schuster,
  5. Frederic T. Chong,
  6. and Jonathan M. Baker
Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). However, many architectures include higher energy levels that are left as unused computational
resources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In randomized benchmarking experiments we observe gate fidelities greater 95% and identify coherence as the primary limiting factor. Our results validate ququarts as a viable tool for quantum information processing.

Autonomous error correction of a single logical qubit using two transmons

  1. Ziqian Li,
  2. Tanay Roy,
  3. David Rodriguez Perez,
  4. Kan-Heng Lee,
  5. Eliot Kapit,
  6. and David I. Schuster
Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits,
along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction (AQEC) instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. We realize an AQEC scheme, implemented with only two transmon qubits in a 2D scalable architecture, that actively corrects single-photon loss and passively suppresses low-frequency dephasing using six microwave drives. Compared to uncorrected encoding, factors of 2.0, 5.1, and 1.4 improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient AQEC to enhance the reliability of a transmon-based quantum information processor.

Realization of two-qutrit quantum algorithms on a programmable superconducting processor

  1. Tanay Roy,
  2. Ziqian Li,
  3. Eliot Kapit,
  4. and David I. Schuster
Processing quantum information using quantum three-level systems or qutrits as the fundamental unit is an alternative to contemporary qubit-based architectures with the potential to
provide significant computational advantages. We demonstrate a fully programmable two-qutrit quantum processor by utilizing the third energy eigenstates of two transmons. We develop a parametric coupler to achieve excellent connectivity in the nine-dimensional Hilbert space enabling efficient implementations of two-qutrit gates. We characterize our processor by realizing several algorithms like Deutsch-Jozsa, Bernstein-Vazirani, and Grover’s search. Our efficient ancilla-free protocols allow us to show that two stages of Grover’s amplification can improve the success rates of an unstructured search with quantum advantage. Our results pave the way for building fully programmable ternary quantum processors using transmons as building blocks for a universal quantum computer.

Fast high-fidelity gates for galvanically-coupled fluxonium qubits using strong flux modulation

  1. D. K. Weiss,
  2. Helin Zhang,
  3. Chunyang Ding,
  4. Yuwei Ma,
  5. David I. Schuster,
  6. and Jens Koch
Long coherence times, large anharmonicity and robust charge-noise insensitivity render fluxonium qubits an interesting alternative to transmons. Recent experiments have demonstrated
record coherence times for low-frequency fluxonia. Here, we propose a galvanic-coupling scheme with flux-tunable XX coupling. To implement a high-fidelity entangling iSWAP‾‾‾‾‾‾‾√ gate, we modulate the strength of this coupling and devise variable-time identity gates to synchronize required single-qubit operations. Both types of gates are implemented using strong ac flux drives, lasting for only a few drive periods. We employ a theoretical framework capable of capturing qubit dynamics beyond the rotating-wave approximation (RWA) as required for such strong drives. We predict an open-system fidelity of F>0.999 for the iSWAP‾‾‾‾‾‾‾√ gate under realistic conditions.