Simple, High Saturation Power, Quantum-limited, RF SQUID Array-based Josephson Parametric Amplifiers

  1. Ryan Kaufman,
  2. Chenxu Liu,
  3. Katarina Cicak,
  4. Boris Mesits,
  5. Mingkang Xia,
  6. Chao Zhou,
  7. Maria Nowicki,
  8. José Aumentado,
  9. David Pekker,
  10. and Michael Hatridge
High-fidelity quantum non-demolition qubit measurement is critical to error correction and rapid qubit feedback in large-scale quantum computing. High-fidelity readout requires passing
a short and strong pulse through the qubit’s readout resonator, which is then processed by a sufficiently high bandwidth, high saturation power, and quantum-limited amplifier. We have developed a design pipeline that combines time-domain simulation of the un-truncated device Hamiltonian, fabrication constraints, and maximization of saturation power. We have realized an amplifier based on a modified NIST tri-layer Nb fabrication suite which utilizes an array of 25 radio frequency Superconducting QUantum Interference Devices (rf SQUIDs) embedded within a low-Q resonator powered by a high-power voltage pump delivered via a diplexer on the signal port. We show that, despite the intensity of the pump, the device is quantum-efficient and capable of high-fidelity measurement limited by state transitions in the transmon. We present experimental data demonstrating up to -91.2 dBm input saturation power with 20 dB gain, up to 28 MHz instantaneous bandwidth, and phase-preserving qubit measurements with 62% quantum efficiency.

Demonstrating a superconducting dual-rail cavity qubit with erasure-detected logical measurements

  1. Kevin S. Chou,
  2. Tali Shemma,
  3. Heather McCarrick,
  4. Tzu-Chiao Chien,
  5. James D. Teoh,
  6. Patrick Winkel,
  7. Amos Anderson,
  8. Jonathan Chen,
  9. Jacob Curtis,
  10. Stijn J. de Graaf,
  11. John W.O. Garmon,
  12. Benjamin Gudlewski,
  13. William D. Kalfus,
  14. Trevor Keen,
  15. Nishaad Khedkar,
  16. Chan U Lei,
  17. Gangqiang Liu,
  18. Pinlei Lu,
  19. Yao Lu,
  20. Aniket Maiti,
  21. Luke Mastalli-Kelly,
  22. Nitish Mehta,
  23. Shantanu O. Mundhada,
  24. Anirudh Narla,
  25. Taewan Noh,
  26. Takahiro Tsunoda,
  27. Sophia H. Xue,
  28. Joseph O. Yuan,
  29. Luigi Frunzio,
  30. Jose Aumentado,
  31. Shruti Puri,
  32. Steven M. Girvin,
  33. S. Harvey Moseley Jr.,
  34. and Robert J. Schoelkopf
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is to
design a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.

Observation of two-mode squeezing in a traveling wave parametric amplifier

  1. Martina Esposito,
  2. Arpit Ranadive,
  3. Luca Planat,
  4. Sebastian Leger,
  5. Dorian Fraudet,
  6. Vincent Jouanny,
  7. Olivier Buisson,
  8. Wiebke Guichard,
  9. Cécile Naud,
  10. José Aumentado,
  11. Florent Lecocq,
  12. and Nicolas Roch
Traveling wave parametric amplifiers (TWPAs) have recently emerged as essential tools for broadband near quantum-limited amplification. However, their use to generate microwave quantum
states still misses an experimental demonstration. In this letter, we report operation of a TWPA as a source of two-mode squeezed microwave radiation. We demonstrate broadband entanglement generation between two modes separated by up to 400 MHz by measuring logarithmic negativity between 0.27 and 0.51 and collective quadrature squeezing below the vacuum limit between 1.5 and 2.1 dB. This work opens interesting perspectives for the exploration of novel microwave photonics experiments with possible applications in quantum sensing and continuous variable quantum computing.

Fast, High-Fidelity, Quantum Non-demolition Readout of a Superconducting Qubit Using a Transverse Coupling

  1. Bryan T. Gard,
  2. Kurt Jacobs,
  3. José Aumentado,
  4. and Raymond W. Simmonds
While relatively easy to engineer, static transverse coupling between a qubit and a cavity mode satisfies the criteria for a quantum non-demolition (QND) measurement only if the coupling
between the qubit and cavity is much less than their mutual detuning. This can put significant limits on the speed of the measurement, requiring trade-offs in the circuit design between coupling, detuning, and decoherence introduced by the cavity mode. Here, we study a circuit in which the qubit-cavity and the cavity-feedline coupling can be turned on and off, which helps to isolate the qubit. We do not rely on the rotating-wave or dispersive approximations, but solve the full transverse interaction between the qubit and the cavity mode. We show that by carefully choosing the detuning and interaction time, we can exploit a recurrence in the qubit-cavity dynamics in a way that makes it possible to perform very fast, high fidelity, QND measurements. Here, the qubit measurement is performed more like a gate operation between the qubit and the cavity, where the cavity state can be amplified, squeezed, and released in a time-sequenced fashion. In addition, we also show that the non-demolition property of the off-resonant approximation breaks down much faster than its dispersive property, suggesting that many of the dispersive measurements to date have been implemented outside the QND regime.

Generating Multimode Entangled Microwaves with a Superconducting Parametric Cavity

  1. C.W. Sandbo Chang,
  2. M. Simoen,
  3. José Aumentado,
  4. Carlos Sabín,
  5. P. Forn-Díaz,
  6. A. M. Vadiraj,
  7. Fernando Quijandría,
  8. G. Johansson,
  9. I. Fuentes,
  10. and C.M. Wilson
In this Letter, we demonstrate the generation of multimode entangled states of propagating microwaves. The entangled states are generated by parametrically pumping a multimode superconducting
cavity. By combining different pump frequencies, applied simultaneously to the device, we can produce different entanglement structures in a programable fashion. The Gaussian output states are fully characterized by measuring the full covariance matrices of the modes. The covariance matrices are absolutely calibrated using an in situ microwave calibration source, a shot noise tunnel junction. Applying a variety of entanglement measures, we demonstrate both full inseparability and genuine tripartite entanglement of the states. Our method is easily extensible to more modes.

Long-lived, radiation-suppressed superconducting quantum bit in a planar geometry

  1. Martin Sandberg,
  2. Michael R. Vissers,
  3. Tom Ohki,
  4. Jiansong Gao,
  5. Jose Aumentado,
  6. Martin Weides,
  7. and David P. Pappas
We present a superconducting qubit design that is fabricated in a 2D geometry over a superconducting ground plane to enhance the lifetime. The qubit is coupled to a microstrip resonator
for readout. The circuit is fabricated on a silicon substrate using low loss, stoichiometric titanium nitride for capacitor pads and small, shadow-evaporated aluminum/aluminum-oxide junctions. We observe qubit relaxation and coherence times ($T_1$ and $T_2$) of 11.7 $pm$ 0.2 $mu$s and 8.7 $pm$ 0.3 $mu$s, respectively. Calculations show that the proximity of the superconducting plane suppresses the otherwise high radiation loss of the qubit. A significant increase in $T_1$ is projected for a reduced qubit-to-superconducting plane separation.