A Quantum Engineer’s Guide to Superconducting Qubits

  1. Philip Krantz,
  2. Morten Kjaergaard,
  3. Fei Yan,
  4. Terry P. Orlando,
  5. Simon Gustavsson,
  6. and William D. Oliver
The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantum
circuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements — qubit design, noise properties, qubit control, and readout techniques — developed during this period, bridging fundamental concepts in circuit quantum electrodynamics (cQED) and contemporary, state-of-the-art applications in gate-model quantum computation.

Determining interface dielectric losses in superconducting coplanar waveguide resonators

  1. Wayne Woods,
  2. Greg Calusine,
  3. Alexander Melville,
  4. Arjan Sevi,
  5. Evan Golden,
  6. David K. Kim,
  7. Danna Rosenberg,
  8. Jonilyn L. Yoder,
  9. and William D. Oliver
Superconducting quantum computing architectures comprise resonators and qubits that experience energy loss due to two-level systems (TLS) in bulk and interfacial dielectrics. Understanding
these losses is critical to improving performance in superconducting circuits. In this work, we present a method for quantifying the TLS losses of different bulk and interfacial dielectrics present in superconducting coplanar waveguide (CPW) resonators. By combining statistical characterization of sets of specifically designed CPW resonators on isotropically etched silicon substrates with detailed electromagnetic modeling, we determine the separate loss contributions from individual material interfaces and bulk dielectrics. This technique for analyzing interfacial TLS losses can be used to guide targeted improvements to qubits, resonators, and their superconducting fabrication processes.

A tunable coupling scheme for implementing high-fidelity two-qubit gates

  1. Fei Yan,
  2. Philip Krantz,
  3. Youngkyu Sung,
  4. Morten Kjaergaard,
  5. Dan Campbell,
  6. Joel I.J. Wang,
  7. Terry P. Orlando,
  8. Simon Gustavsson,
  9. and William D. Oliver
The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achieving
scalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies.

Distinguishing coherent and thermal photon noise in a circuit QED system

  1. Fei Yan,
  2. Dan Campbell,
  3. Philip Krantz,
  4. Morten Kjaergaard,
  5. David Kim,
  6. Jonilyn L. Yoder,
  7. David Hover,
  8. Adam Sears,
  9. Andrew J. Kerman,
  10. Terry P. Orlando,
  11. Simon Gustavsson,
  12. and William D. Oliver
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety
of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra.

Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators

  1. Greg Calusine,
  2. Alexander Melville,
  3. Wayne Woods,
  4. Rabindra Das,
  5. Corey Stull,
  6. Vlad Bolkhovsky,
  7. Danielle Braje,
  8. David Hover,
  9. David K. Kim,
  10. Xhovalin Miloshi,
  11. Danna Rosenberg,
  12. Arjan Sevi,
  13. Jonilyn L. Yoder,
  14. Eric A. Dauler,
  15. and William D. Oliver
Improving the performance of superconducting qubits and resonators generally results from a combination of materials and fabrication process improvements and design modifications that
reduce device sensitivity to residual losses. One instance of this approach is to use trenching into the device substrate in combination with superconductors and dielectrics with low intrinsic losses to improve quality factors and coherence times. Here we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 μm into the silicon substrate. Additionally, we measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance.

Coherent coupled qubits for quantum annealing

  1. Steven J. Weber,
  2. Gabriel O. Samach,
  3. David Hover,
  4. Simon Gustavsson,
  5. David K. Kim,
  6. Danna Rosenberg,
  7. Adam P. Sears,
  8. Fei Yan,
  9. Jonilyn L. Yoder,
  10. William D. Oliver,
  11. and Andrew J. Kerman
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux
qubits with short coherence times, limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach, using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (∼50 nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

Suppressing relaxation in superconducting qubits by quasiparticle pumping

  1. Simon Gustavsson,
  2. Fei Yan,
  3. Gianluigi Catelani,
  4. Jonas Bylander,
  5. Archana Kamal,
  6. Jeffrey Birenbaum,
  7. David Hover,
  8. Danna Rosenberg,
  9. Gabriel Samach,
  10. Adam P. Sears,
  11. Steven J. Weber,
  12. Jonilyn L. Yoder,
  13. John Clarke,
  14. Andrew J. Kerman,
  15. Fumiki Yoshihara,
  16. Yasunobu Nakamura,
  17. Terry P. Orlando,
  18. and William D. Oliver
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous
coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. In this work, we investigate a complementary, stochastic approach to reducing errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. We report a 70% reduction in the quasiparticle density, resulting in a threefold enhancement in qubit relaxation times, and a comparable reduction in coherence variability.

Single microwave-photon detector using an artificial Λ-type three-level system

  1. Kunihiro Inomata,
  2. Zhirong Lin,
  3. Kazuki Koshino,
  4. William D. Oliver,
  5. Jaw-Shen Tsai,
  6. Tsuyoshi Yamamoto,
  7. and Yasunobu Nakamura
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five
orders of magnitude less than their optical counterpart, making the efficient detection of single microwave photons extremely challenging. Here, we demonstrate the detection of a single microwave photon propagating through a waveguide. The detector is implemented with an „impedance-matched“ artificial Λ system comprising the dressed states of a driven superconducting qubit coupled to a microwave resonator. We attain a single-photon detection efficiency of 0.66±0.06 with a reset time of ∼400~ns. This detector can be exploited for various applications in quantum sensing, quantum communication and quantum information processing.

Coherence and Decay of Higher Energy Levels of a Superconducting Transmon Qubit

  1. Michael J. Peterer,
  2. Samuel J. Bader,
  3. Xiaoyue Jin,
  4. Fei Yan,
  5. Archana Kamal,
  6. Ted Gudmundsen,
  7. Peter J. Leek,
  8. Terry P. Orlando,
  9. William D. Oliver,
  10. and Simon Gustavsson
We present measurements of coherence and successive decay dynamics of higher energy levels of a superconducting transmon qubit. By applying consecutive π-pulses for each sequential
transition frequency, we excite the qubit from the ground state up to its fourth excited level and characterize the decay and coherence of each state. We find the decay to proceed mainly sequentially, with relaxation times in excess of 20 μs for all transitions. We also provide a direct measurement of the charge dispersion of these levels by analyzing beating patterns in Ramsey fringes. The results demonstrate the feasibility of using higher levels in transmon qubits for encoding quantum information.

Flux qubit noise spectroscopy using Rabi oscillations under strong driving conditions

  1. Fumiki Yoshihara,
  2. Yasunobu Nakamura,
  3. Fei Yan,
  4. Simon Gustavsson,
  5. Jonas Bylander,
  6. William D. Oliver,
  7. and Jaw-Shen Tsai
We infer the high-frequency flux noise spectrum in a superconducting flux qubit by studying the decay of Rabi oscillations under strong driving conditions. The large anharmonicity of
the qubit and its strong inductive coupling to a microwave line enabled high-amplitude driving without causing significant additional decoherence. Rabi frequencies up to 1.7 GHz were achieved, approaching the qubit’s level splitting of 4.8 GHz, a regime where the rotating-wave approximation breaks down as a model for the driven dynamics. The spectral density of flux noise observed in the wide frequency range decreases with increasing frequency up to 300 MHz, where the spectral density is not very far from the extrapolation of the 1/f spectrum obtained from the free-induction-decay measurements. We discuss a possible origin of the flux noise due to surface electron spins.