As designs for superconducting qubits become more complex, 3D integration of two or more vertically bonded chips will become necessary to enable increased density and connectivity.Precise control of the spacing between these chips is required for accurate prediction of circuit performance. In this paper, we demonstrate an improvement in the planarity of bonded superconducting qubit chips while retaining device performance by utilizing hard-stop silicon spacer posts. These silicon spacers are defined by etching several microns into a silicon substrate and are compatible with 3D-integrated qubit fabrication. This includes fabrication of Josephson junctions, superconducting air-bridge crossovers, underbump metallization and indium bumps. To qualify the integrated process, we demonstrate high-quality factor resonators on the etched surface and measure qubit coherence (T1, T2,echo > 40 {\mu}s) in the presence of silicon posts as near as 350 {\mu}m to the qubit.
Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emergefrom global technology enterprises to quantum computing startups. Here, an overview of superconducting quantum circuit microwave control is presented. Furthermore, we discuss one of the persistent engineering challenges in the field, how to control the electromagnetic environment of increasingly complex superconducting circuits such that they are simultaneously protected and efficiently controllable.
Superconducting qubits are leading candidates in the race to build a quantum computer capable of realizing computations beyond the reach of modern supercomputers. The superconductingqubit modality has been used to demonstrate prototype algorithms in the `noisy intermediate scale quantum‘ (NISQ) technology era, in which non-error-corrected qubits are used to implement quantum simulations and quantum algorithms. With the recent demonstrations of multiple high fidelity two-qubit gates as well as operations on logical qubits in extensible superconducting qubit systems, this modality also holds promise for the longer-term goal of building larger-scale error-corrected quantum computers. In this brief review, we discuss several of the recent experimental advances in qubit hardware, gate implementations, readout capabilities, early NISQ algorithm implementations, and quantum error correction using superconducting qubits. While continued work on many aspects of this technology is certainly necessary, the pace of both conceptual and technical progress in the last years has been impressive, and here we hope to convey the excitement stemming from this progress.
The aim of this review is to provide quantum engineers with an introductory guide to the central concepts and challenges in the rapidly accelerating field of superconducting quantumcircuits. Over the past twenty years, the field has matured from a predominantly basic research endeavor to one that increasingly explores the engineering of larger-scale superconducting quantum systems. Here, we review several foundational elements — qubit design, noise properties, qubit control, and readout techniques — developed during this period, bridging fundamental concepts in circuit quantum electrodynamics (cQED) and contemporary, state-of-the-art applications in gate-model quantum computation.
Superconducting quantum computing architectures comprise resonators and qubits that experience energy loss due to two-level systems (TLS) in bulk and interfacial dielectrics. Understandingthese losses is critical to improving performance in superconducting circuits. In this work, we present a method for quantifying the TLS losses of different bulk and interfacial dielectrics present in superconducting coplanar waveguide (CPW) resonators. By combining statistical characterization of sets of specifically designed CPW resonators on isotropically etched silicon substrates with detailed electromagnetic modeling, we determine the separate loss contributions from individual material interfaces and bulk dielectrics. This technique for analyzing interfacial TLS losses can be used to guide targeted improvements to qubits, resonators, and their superconducting fabrication processes.
The prospect of computational hardware with quantum advantage relies critically on the quality of quantum gate operations. Imperfect two-qubit gates is a major bottleneck for achievingscalable quantum information processors. Here, we propose a generalizable and extensible scheme for a two-qubit coupler switch that controls the qubit-qubit coupling by modulating the coupler frequency. Two-qubit gate operations can be implemented by operating the coupler in the dispersive regime, which is non-invasive to the qubit states. We investigate the performance of the scheme by simulating a universal two-qubit gate on a superconducting quantum circuit, and find that errors from known parasitic effects are strongly suppressed. The scheme is compatible with existing high-coherence hardware, thereby promising a higher gate fidelity with current technologies.
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a varietyof sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra.
Improving the performance of superconducting qubits and resonators generally results from a combination of materials and fabrication process improvements and design modifications thatreduce device sensitivity to residual losses. One instance of this approach is to use trenching into the device substrate in combination with superconductors and dielectrics with low intrinsic losses to improve quality factors and coherence times. Here we demonstrate titanium nitride coplanar waveguide resonators with mean quality factors exceeding two million and controlled trenching reaching 2.2 μm into the silicon substrate. Additionally, we measure sets of resonators with a range of sizes and trench depths and compare these results with finite-element simulations to demonstrate quantitative agreement with a model of interface dielectric loss. We then apply this analysis to determine the extent to which trenching can improve resonator performance.
Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting fluxqubits with short coherence times, limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach, using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (∼50 nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.
Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneouscoherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. In this work, we investigate a complementary, stochastic approach to reducing errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. We report a 70% reduction in the quasiparticle density, resulting in a threefold enhancement in qubit relaxation times, and a comparable reduction in coherence variability.