Quantum metamaterial for nondestructive microwave photon counting

  1. Arne L. Grimsmo,
  2. Baptiste Royer,
  3. John Mark Kreikebaum,
  4. Yufeng Ye,
  5. Kevin O'Brien,
  6. Irfan Siddiqi,
  7. and Alexandre Blais
Detecting traveling photons is an essential primitive for many quantum information processing tasks. We introduce a single-photon detector design operating in the microwave domain,
based on a weakly nonlinear metamaterial where the nonlinearity is provided by a large number of Josephson junctions. The combination of weak nonlinearity and large spatial extent circumvents well-known obstacles limiting approaches based on a localized Kerr medium. Using numerical many-body simulations we show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths. A remarkable feature of the detector is that the metamaterial approach allows for a large detection bandwidth. In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed. The detector design we introduce offers new possibilities for quantum information processing, quantum optics and metrology in the microwave frequency domain.

Microwave Packaging for Superconducting Qubits

  1. Benjamin Lienhard,
  2. Jochen Braumüller,
  3. Wayne Woods,
  4. Danna Rosenberg,
  5. Greg Calusine,
  6. Steven Weber,
  7. Antti Vepsäläinen,
  8. Kevin O'Brien,
  9. Terry P. Orlando,
  10. Simon Gustavsson,
  11. and William D. Oliver
Over the past two decades, the performance of superconducting quantum circuits has tremendously improved. The progress of superconducting qubits enabled a new industry branch to emerge
from global technology enterprises to quantum computing startups. Here, an overview of superconducting quantum circuit microwave control is presented. Furthermore, we discuss one of the persistent engineering challenges in the field, how to control the electromagnetic environment of increasingly complex superconducting circuits such that they are simultaneously protected and efficiently controllable.