Unimon qubit

  1. Eric Hyyppä,
  2. Suman Kundu,
  3. Chun Fai Chan,
  4. András Gunyhó,
  5. Juho Hotari,
  6. Olavi Kiuru,
  7. Alessandro Landra,
  8. Wei Liu,
  9. Fabian Marxer,
  10. Akseli Mäkinen,
  11. Jean-Luc Orgiazzi,
  12. Mario Palma,
  13. Mykhailo Savytskyi,
  14. Francesca Tosto,
  15. Jani Tuorila,
  16. Vasilii Vadimov,
  17. Tianyi Li,
  18. Caspar Ockeloen-Korppi,
  19. Johannes Heinsoo,
  20. Kuan Yen Tan,
  21. Juha Hassel,
  22. and Mikko Möttönen
Superconducting qubits are one of the most promising candidates to implement quantum computers. The superiority of superconducting quantum computers over any classical device in simulating
random but well-determined quantum circuits has already been shown in two independent experiments and important steps have been taken in quantum error correction. However, the currently wide-spread qubit designs do not yet provide high enough performance to enable practical applications or efficient scaling of logical qubits owing to one or several following issues: sensitivity to charge or flux noise leading to decoherence, too weak non-linearity preventing fast operations, undesirably dense excitation spectrum, or complicated design vulnerable to parasitic capacitance. Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. We measure the qubit frequency, ω01/(2π), and anharmonicity α over the full dc-flux range and observe, in agreement with our quantum models, that the qubit anharmonicity is greatly enhanced at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13-ns single-qubit gates on two qubits with (ω01,α)=(4.49 GHz,434 MHz)×2π and (3.55 GHz,744 MHz)×2π, respectively. The energy relaxation time T1≲10 μs is stable for hours and seems to be limited by dielectric losses. Thus, future improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible quantum advantage with noisy systems.

Observation of Floquet states in a strongly driven artificial atom

  1. Chunqing Deng,
  2. Jean-Luc Orgiazzi,
  3. Feiruo Shen,
  4. Sahel Ashhab,
  5. and Adrian Lupascu
We present experiments on the driven dynamics of a two-level superconducting artificial atom. The driving strength reaches 4.78 GHz, significantly exceeding the transition frequency
of 2.288 GHz. The observed dynamics is described in terms of quasienergies and quasienergy states, in agreement with Floquet theory. In addition, we observe the role of pulse shaping in the dynamics, as determined by non-adiabatic transitions between Floquet states, and we implement subnanosecond single-qubit operations. These results pave the way to quantum control using strong driving with applications in quantum technologies.