The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductivecoupling between two heavy-fluxonium qubits, each with ∼50MHz frequencies and ∼5 GHz anharmonicities. The coupler enables the qubits to have a large tuning range of XX coupling strengths (−35 to 75 MHz). The ZZ coupling strength is <3kHz across the entire coupler bias range, and <100Hz at the coupler off-position. These qualities lead to fast, high-fidelity single- and two-qubit gates. By driving at the difference frequency of the two qubits, we realize a iSWAP‾‾‾‾‾‾‾√ gate in 258ns with fidelity 99.72%, and by driving at the sum frequency of the two qubits, we achieve a bSWAP‾‾‾‾‾‾‾‾√ gate in 102ns with fidelity 99.91%. This latter gate is only 5 qubit Larmor periods in length. We run cross-entropy benchmarking for over 20 consecutive hours and measure stable gate fidelities, with bSWAP‾‾‾‾‾‾‾‾√ drift (2σ) <0.02% and iSWAP‾‾‾‾‾‾‾√ drift <0.08%.[/expand]
We present a novel transmon qubit fabrication technique that yields systematic improvements in T1 coherence times. We fabricate devices using an encapsulation strategy that involvespassivating the surface of niobium and thereby preventing the formation of its lossy surface oxide. By maintaining the same superconducting metal and only varying the surface structure, this comparative investigation examining different capping materials and film substrates across different qubit foundries definitively demonstrates the detrimental impact that niobium oxides have on the coherence times of superconducting qubits, compared to native oxides of tantalum, aluminum or titanium nitride. Our surface-encapsulated niobium qubit devices exhibit T1 coherence times 2 to 5 times longer than baseline niobium qubit devices with native niobium oxides. When capping niobium with tantalum, we obtain median qubit lifetimes above 200 microseconds. Our comparative structural and chemical analysis suggests that amorphous niobium suboxides may induce higher losses. These results are in line with high-accuracy measurements of the niobium oxide loss tangent obtained with ultra-high Q superconducting radiofrequency (SRF) cavities. This new surface encapsulation strategy enables further reduction of dielectric losses via passivation with ambient-stable materials, while preserving fabrication and scalable manufacturability thanks to the compatibility with silicon processes.
Long coherence times, large anharmonicity and robust charge-noise insensitivity render fluxonium qubits an interesting alternative to transmons. Recent experiments have demonstratedrecord coherence times for low-frequency fluxonia. Here, we propose a galvanic-coupling scheme with flux-tunable XX coupling. To implement a high-fidelity entangling iSWAP‾‾‾‾‾‾‾√ gate, we modulate the strength of this coupling and devise variable-time identity gates to synchronize required single-qubit operations. Both types of gates are implemented using strong ac flux drives, lasting for only a few drive periods. We employ a theoretical framework capable of capturing qubit dynamics beyond the rotating-wave approximation (RWA) as required for such strong drives. We predict an open-system fidelity of F>0.999 for the iSWAP‾‾‾‾‾‾‾√ gate under realistic conditions.
The development of new superconducting circuits and the improvement of existing ones rely on the accurate modeling of spectral properties which are key to achieving the needed advancesin qubit performance. Systematic circuit analysis at the lumped-element level, starting from a circuit network and culminating in a Hamiltonian appropriately describing the quantum properties of the circuit, is a well-established procedure, yet cumbersome to carry out manually for larger circuits. We present work utilizing symbolic computer algebra and numerical diagonalization routines versatile enough to tackle a variety of circuits. Results from this work are accessible through a newly released module of the scqubits package.
scqubits is an open-source Python package for simulating and analyzing superconducting circuits. It provides convenient routines to obtain energy spectra of common superconducting qubits,such as the transmon, fluxonium, flux, cos(2ϕ) and the 0-π qubit. scqubits also features a number of options for visualizing the computed spectral data, including plots of energy levels as a function of external parameters, display of matrix elements of various operators as well as means to easily plot qubit wavefunctions. Many of these tools are not limited to single qubits, but extend to composite Hilbert spaces consisting of coupled superconducting qubits and harmonic (or weakly anharmonic) modes. The library provides an extensive suite of methods for estimating qubit coherence times due to a variety of commonly considered noise channels. While all functionality of scqubits can be accessed programatically, the package also implements GUI-like widgets that, with a few clicks can help users both create relevant Python objects, as well as explore their properties through various plots. When applicable, the library harnesses the computing power of multiple cores via multiprocessing. scqubits further exposes a direct interface to the Quantum Toolbox in Python (QuTiP) package, allowing the user to efficiently leverage QuTiP’s proven capabilities for simulating time evolution.
Artificial atoms realized by superconducting circuits offer unique opportunities to store and process quantum information with high fidelity. Among them, implementations of circuitsthat harness intrinsic noise protection have been rapidly developed in recent years. These noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels. The main challenges in engineering such systems are simultaneously guarding against both bit- and phase-flip errors, and also ensuring high-fidelity qubit control. Although partial noise protection is possible in superconducting circuits relying on a single quantum degree of freedom, the promise of complete protection can only be fulfilled by implementing multimode or hybrid circuits. This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
We generalize solid-state tight-binding techniques for the spectral analysis of large superconducting circuits. We find that tight-binding states can be better suited for approximatingthe low-energy excitations than charge-basis states, as illustrated for the interesting example of the current-mirror circuit. The use of tight binding can dramatically lower the Hilbert space dimension required for convergence to the true spectrum, and allows for the accurate simulation of larger circuits that are out of reach of charge basis diagonalization.
vWe use the quasienergy structure that emerges when a fluxonium superconducting circuit is driven periodically to encode quantum information with dynamically induced flux-insensitivesweet spots. The framework of Floquet theory provides an intuitive description of these high-coherence working points located away from the half-flux symmetry point of the undriven qubit. This approach offers flexibility in choosing the flux bias point and the energy of the logical qubit states as shown in [\textit{Huang et al., 2020}]. We characterize the response of the system to noise in the modulation amplitude and DC flux bias, and experimentally demonstrate an optimal working point which is simultaneously insensitive against fluctuations in both. We observe a 40-fold enhancement of the qubit coherence times measured with Ramsey-type interferometry at the dynamical sweet spot compared with static operation at the same bias point.
Protecting superconducting qubits from low-frequency noise is essential for advancing superconducting quantum computation. We here introduce a protocol for engineering dynamical sweetspots which reduce the susceptibility of a qubit to low-frequency noise. Based on the application of periodic drives, the location of the dynamical sweet spots can be obtained analytically in the framework of Floquet theory. In particular, for the example of fluxonium biased slightly away from half a flux quantum, we predict an enhancement of pure-dephasing by three orders of magnitude. Employing the Floquet eigenstates as the computational basis, we show that high-fidelity single-qubit gates can be implemented while maintaining dynamical sweet-spot operation. We further confirm that qubit readout can be performed by adiabatically mapping the Floquet states back to the static qubit states, and subsequently applying standard measurement techniques. Our work provides an intuitive tool to encode quantum information in robust, time-dependent states, and may be extended to alternative architectures for quantum information processing.
The extit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustrationpoint. However, the suppressed charge matrix elements and low transition frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with 97\% fidelity, corresponding to cooling it to 190 μK. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with T1,T2e∼~300~μs, we realize single-qubit gates in 20−60~ns with an average gate fidelity of 99.8% as characterized by randomized benchmarking.