Near-ground state cooling in electromechanics using measurement-based feedback and Josephson parametric amplifier

  1. Ewa Rej,
  2. Richa Cutting,
  3. Debopam Datta,
  4. Nils Tiencken,
  5. Joonas Govenius,
  6. Visa Vesterinen,
  7. Yulong Liu,
  8. and Mika A. Sillanpää
Feedback-based control of nano- and micromechanical resonators can enable the study of macroscopic quantum phenomena and also sensitive force measurements. Here, we demonstrate the
feedback cooling of a low-loss and high-stress macroscopic SiN membrane resonator close to its quantum ground state. We use the microwave optomechanical platform, where the resonator is coupled to a microwave cavity. The experiment utilizes a Josephson travelling wave parametric amplifier, which is nearly quantum-limited in added noise, and is important to mitigate resonator heating due to system noise in the feedback loop. We reach a thermal phonon number as low as 1.6, which is limited primarily by microwave-induced heating. We also discuss the sideband asymmetry observed when a weak microwave tone for independent readout is applied in addition to other tones used for the cooling. The asymmetry can be qualitatively attributed to the quantum-mechanical imbalance between emission and absorption. However, we find that the observed asymmetry is only partially due to this quantum effect. In specific situations, the asymmetry is fully dominated by a cavity Kerr effect under multitone irradiation.

Propagating Quantum Microwaves: Towards Applications in Communication and Sensing

  1. Mateo Casariego,
  2. Emmanuel Zambrini Cruzeiro,
  3. Stefano Gherardini,
  4. Tasio Gonzalez-Raya,
  5. Rui André,
  6. Gonçalo Frazão,
  7. Giacomo Catto,
  8. Mikko Möttönen,
  9. Debopam Datta,
  10. Klaara Viisanen,
  11. Joonas Govenius,
  12. Mika Prunnila,
  13. Kimmo Tuominen,
  14. Maximilian Reichert,
  15. Michael Renger,
  16. Kirill G. Fedorov,
  17. Frank Deppe,
  18. Harriet van der Vliet,
  19. A. J. Matthews,
  20. Yolanda Fernández,
  21. R. Assouly,
  22. R. Dassonneville,
  23. B. Huard,
  24. Mikel Sanz,
  25. and Yasser Omar
The field of propagating quantum microwaves has started to receive considerable attention in the past few years. Motivated at first by the lack of an efficient microwave-to-optical
platform that could solve the issue of secure communication between remote superconducting chips, current efforts are starting to reach other areas, from quantum communications to sensing. Here, we attempt at giving a state-of-the-art view of the two, pointing at some of the technical and theoretical challenges we need to address, and while providing some novel ideas and directions for future research. Hence, the goal of this paper is to provide a bigger picture, and — we hope — to inspire new ideas in quantum communications and sensing: from open-air microwave quantum key distribution to direct detection of dark matter, we expect that the recent efforts and results in quantum microwaves will soon attract a wider audience, not only in the academic community, but also in an industrial environment.