Tuning and Amplifying the Interactions in Superconducting Quantum Circuits with Subradiant Qubits

  1. Qi-Ming Chen,
  2. Florian Fesquet,
  3. Kedar E. Honasoge,
  4. Fabian Kronowetter,
  5. Yuki Nojiri,
  6. Michael Renger,
  7. Kirill G. Fedorov,
  8. Achim Marx,
  9. Frank Deppe,
  10. and Rudolf Gross
We propose a tunable coupler consisting of N off-resonant and fixed-frequency qubits that can tune and even amplify the effective interaction between two general circuit components. The tuning range of the interaction is proportional to N, with a minimum value of zero and a maximum that can exceed the physical coupling rates in the system. The effective coupling rate is determined by the collective magnetic quantum number of the qubit ensemble, which takes only discrete values and is free from collective decay and decoherence. Using single-photon pi-pulses, the coupling rate can be switched between arbitrary initial and final values within the dynamic range in a single step without going through intermediate values. A cascade of the couplers for amplifying small interactions or weak signals is also discussed. These results should not only stimulate interest in exploring the collective effects in quantum information processing, but also enable development of applications in tuning and amplifying the interactions in a general cavity-QED system.

leave comment