Propagating Quantum Microwaves: Towards Applications in Communication and Sensing

  1. Mateo Casariego,
  2. Emmanuel Zambrini Cruzeiro,
  3. Stefano Gherardini,
  4. Tasio Gonzalez-Raya,
  5. Rui André,
  6. Gonçalo Frazão,
  7. Giacomo Catto,
  8. Mikko Möttönen,
  9. Debopam Datta,
  10. Klaara Viisanen,
  11. Joonas Govenius,
  12. Mika Prunnila,
  13. Kimmo Tuominen,
  14. Maximilian Reichert,
  15. Michael Renger,
  16. Kirill G. Fedorov,
  17. Frank Deppe,
  18. Harriet van der Vliet,
  19. A. J. Matthews,
  20. Yolanda Fernández,
  21. R. Assouly,
  22. R. Dassonneville,
  23. B. Huard,
  24. Mikel Sanz,
  25. and Yasser Omar
The field of propagating quantum microwaves has started to receive considerable attention in the past few years. Motivated at first by the lack of an efficient microwave-to-optical
platform that could solve the issue of secure communication between remote superconducting chips, current efforts are starting to reach other areas, from quantum communications to sensing. Here, we attempt at giving a state-of-the-art view of the two, pointing at some of the technical and theoretical challenges we need to address, and while providing some novel ideas and directions for future research. Hence, the goal of this paper is to provide a bigger picture, and — we hope — to inspire new ideas in quantum communications and sensing: from open-air microwave quantum key distribution to direct detection of dark matter, we expect that the recent efforts and results in quantum microwaves will soon attract a wider audience, not only in the academic community, but also in an industrial environment.