Enhanced Superconducting Qubit Performance Through Ammonium Fluoride Etch

  1. Cameron J. Kopas,
  2. Dominic P. Goronzy,
  3. Thang Pham,
  4. Carlos G. Torres-Castanedo,
  5. Matthew Cheng,
  6. Rory Cochrane,
  7. Patrick Nast,
  8. Ella Lachman,
  9. Nikolay Z. Zhelev,
  10. Andre Vallieres,
  11. Akshay A. Murthy,
  12. Jin-su Oh,
  13. Lin Zhou,
  14. Matthew J. Kramer,
  15. Hilal Cansizoglu,
  16. Michael J. Bedzyk,
  17. Vinayak P. Dravid,
  18. Alexander Romanenko,
  19. Anna Grassellino,
  20. Josh Y. Mutus,
  21. Mark C. Hersam,
  22. and Kameshwar Yadavalli
The performance of superconducting qubits is often limited by dissipation and two-level systems (TLS) losses. The dominant sources of these losses are believed to originate from amorphous
materials and defects at interfaces and surfaces, likely as a result of fabrication processes or ambient exposure. Here, we explore a novel wet chemical surface treatment at the Josephson junction-substrate and the substrate-air interfaces by replacing a buffered oxide etch (BOE) cleaning process with one that uses hydrofluoric acid followed by aqueous ammonium fluoride. We show that the ammonium fluoride etch process results in a statistically significant improvement in median T1 by ∼22% (p=0.002), and a reduction in the number of strongly-coupled TLS in the tunable frequency range. Microwave resonator measurements on samples treated with the ammonium fluoride etch prior to niobium deposition also show ∼33% lower TLS-induced loss tangent compared to the BOE treated samples. As the chemical treatment primarily modifies the Josephson junction-substrate interface and substrate-air interface, we perform targeted chemical and structural characterizations to examine materials‘ differences at these interfaces and identify multiple microscopic changes that could contribute to decreased TLS.

Alternating Bias Assisted Annealing of Amorphous Oxide Tunnel Junctions

  1. David P. Pappas,
  2. Mark Field,
  3. Cameron Kopas,
  4. Joel A. Howard,
  5. Xiqiao Wang,
  6. Ella Lachman,
  7. Lin Zhou,
  8. Jinsu Oh,
  9. Kameshwar Yadavalli,
  10. Eyob A. Sete,
  11. Andrew Bestwick,
  12. Matthew J. Kramer,
  13. and Joshua Y. Mutus
We demonstrate a transformational technique for controllably tuning the electrical properties of fabricated thermally oxidized amorphous aluminum-oxide tunnel junctions. Using conventional
test equipment to apply an alternating bias to a heated tunnel barrier, giant increases in the room temperature resistance, greater than 70%, can be achieved. The rate of resistance change is shown to be strongly temperature-dependent, and is independent of junction size in the sub-micron regime. In order to measure their tunneling properties at mK temperatures, we characterized transmon qubit junctions treated with this alternating-bias assisted annealing (ABAA) technique. The measured frequencies follow the Ambegaokar-Baratoff relation between the shifted resistance and critical current. Further, these studies show a reduction of junction-contributed loss on the order of ≈2×10−6, along with a significant reduction in resonant- and off-resonant-two level system defects when compared to untreated samples. Imaging with high-resolution TEM shows that the barrier is still predominantly amorphous with a more uniform distribution of aluminum coordination across the barrier relative to untreated junctions. This new approach is expected to be widely applicable to a broad range of devices that rely on amorphous aluminum oxide, as well as the many other metal-insulator-metal structures used in modern electronics.

Simple coplanar waveguide resonator mask targeting metal-substrate interface

  1. Cameron J. Kopas,
  2. Ella Lachman,
  3. Corey Rae H McRae,
  4. Yuvraj Mohan,
  5. Josh Y. Mutus,
  6. Ani Nersisyan,
  7. and Amrit Poudel
This white paper presents a single-layer mask, found at this https URL. It is designed for fabrication of superconducting microwave resonators towards 1:1 comparisons of dielectric
losses from the metal-substrate interface. Finite-element electromagnetic simulations are used to determine participation ratios of the four major regions of the on-chip devices, as well as to confirm lack of crosstalk between neighboring devices and demonstrate coupling tunability over three orders of magnitude. This mask is intended as an open-source community resource for facilitating precise and accurate comparisons of materials in the single-photon, millikelvin regime.