Simple coplanar waveguide resonator mask targeting metal-substrate interface

  1. Cameron J. Kopas,
  2. Ella Lachman,
  3. Corey Rae H McRae,
  4. Yuvraj Mohan,
  5. Josh Y. Mutus,
  6. Ani Nersisyan,
  7. and Amrit Poudel
This white paper presents a single-layer mask, found at this https URL. It is designed for fabrication of superconducting microwave resonators towards 1:1 comparisons of dielectric
losses from the metal-substrate interface. Finite-element electromagnetic simulations are used to determine participation ratios of the four major regions of the on-chip devices, as well as to confirm lack of crosstalk between neighboring devices and demonstrate coupling tunability over three orders of magnitude. This mask is intended as an open-source community resource for facilitating precise and accurate comparisons of materials in the single-photon, millikelvin regime.

Perspective: Reproducible Coherence Characterization of Superconducting Quantum Devices

  1. Corey Rae H McRae,
  2. Gregory M Stiehl,
  3. Haozhi Wang,
  4. Sheng-Xiang Lin,
  5. Shane A. Caldwell,
  6. David P. Pappas,
  7. Josh Mutus,
  8. and Joshua Combes
As the field of superconducting quantum computing approaches maturity, optimization of single-device performance is proving to be a promising avenue towards large-scale quantum computers.
However, this optimization is possible only if performance metrics can be accurately compared among measurements, devices, and laboratories. Currently such comparisons are inaccurate or impossible due to understudied errors from a plethora of sources. In this Perspective, we outline the current state of error analysis for qubits and resonators in superconducting quantum circuits, and discuss what future investigations are required before superconducting quantum device optimization can be realized.