Characterizing decoherence rates of a superconducting qubit by direct microwave scattering

  1. Yong Lu,
  2. Andreas Bengtsson,
  3. Jonathan J. Burnett,
  4. Emely Wiegand,
  5. Baladitya Suri,
  6. Philip Krantz,
  7. Anita Fadavi Roudsari,
  8. Anton Frisk Kockum,
  9. Simone Gasparinetti,
  10. Göran Johansson,
  11. and Per Delsing
We experimentally investigate a superconducting qubit coupled to the end of an open transmission line, in a regime where the qubit decay rates to the transmission line and to its own
environment are comparable. We perform measurements of coherent and incoherent scattering, on- and off-resonant fluorescence, and time-resolved dynamics to determine the decay and decoherence rates of the qubit. In particular, these measurements let us discriminate between non-radiative decay and pure dephasing. We combine and contrast results across all methods and find consistent values for the extracted rates. The results show that the pure dephasing rate is one order of magnitude smaller than the non-radiative decay rate for our qubit. Our results indicate a pathway to benchmark decoherence rates of superconducting qubits in a resonator-free setting.

Quantum communication with time-bin encoded microwave photons

  1. Philipp Kurpiers,
  2. Marek Pechal,
  3. Baptiste Royer,
  4. Paul Magnard,
  5. Theo Walter,
  6. Johannes Heinsoo,
  7. Yves Salathé,
  8. Abdulkadir Akin,
  9. Simon Storz,
  10. Jean-Claude Besse,
  11. Simone Gasparinetti,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Heralding techniques are useful in quantum communication to circumvent losses without resorting to error correction schemes or quantum repeaters. Such techniques are realized, for example,
by monitoring for photon loss at the receiving end of the quantum link while not disturbing the transmitted quantum state. We describe and experimentally benchmark a scheme that incorporates error detection in a quantum channel connecting two transmon qubits using traveling microwave photons. This is achieved by encoding the quantum information as a time-bin superposition of a single photon, which simultaneously realizes high communication rates and high fidelities. The presented scheme is straightforward to implement in circuit QED and is fully microwave-controlled, making it an interesting candidate for future modular quantum computing architectures.

Fast and Unconditional All-Microwave Reset of a Superconducting Qubit

  1. Paul Magnard,
  2. Philipp Kurpiers,
  3. Baptiste Royer,
  4. Theo Walter,
  5. Jean-Claude Besse,
  6. Simone Gasparinetti,
  7. Marek Pechal,
  8. Johannes Heinsoo,
  9. Simon Storz,
  10. Alexandre Blais,
  11. and Andreas Wallraff
Active qubit reset is a key operation in many quantum algorithms, and particularly in error correction codes. Here, we experimentally demonstrate a reset scheme of a three level transmon
artificial atom coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between the |f,0⟩ and |g,1⟩ states of the coupled transmon-resonator system, with |g⟩ and |f⟩ denoting the ground and second excited states of the transmon, and |0⟩ and |1⟩ the photon Fock states of the resonator. We characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its ground state with 0.2% residual excitation in less than 500ns. Our protocol is of practical interest as it has no requirements on the architecture, beyond those for fast and efficient single-shot readout of the transmon, and does not require feedback.

Deterministic Quantum State Transfer and Generation of Remote Entanglement using Microwave Photons

  1. Philipp Kurpiers,
  2. Paul Magnard,
  3. Theo Walter,
  4. Baptiste Royer,
  5. Marek Pechal,
  6. Johannes Heinsoo,
  7. Yves Salathé,
  8. Abdulkadir Akin,
  9. Simon Storz,
  10. Jean-Claude Besse,
  11. Simone Gasparinetti,
  12. Alexandre Blais,
  13. and Andreas Wallraff
Sharing information coherently between nodes of a quantum network is at the foundation of distributed quantum information processing. In this scheme, the computation is divided into
subroutines and performed on several smaller quantum registers connected by classical and quantum channels. A direct quantum channel, which connects nodes deterministically, rather than probabilistically, is advantageous for fault-tolerant quantum computation because it reduces the threshold requirements and can achieve larger entanglement rates. Here, we implement deterministic state transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits constitute a universal quantum node capable of sending, receiving, storing, and processing quantum information. Our implementation is based on an all-microwave cavity-assisted Raman process which entangles or transfers the qubit state of a transmon-type artificial atom to a time-symmetric itinerant single photon. We transfer qubit states at a rate of 50kHz using the emitted photons which are absorbed at the receiving node with a probability of 98.1±0.1% achieving a transfer process fidelity of 80.02±0.07%. We also prepare on demand remote entanglement with a fidelity as high as 78.9±0.1%. Our results are in excellent agreement with numerical simulations based on a master equation description of the system. This deterministic quantum protocol has the potential to be used as a backbone of surface code quantum error correction across different nodes of a cryogenic network to realize large-scale fault-tolerant quantum computation in the circuit quantum electrodynamic architecture.

Single-Shot Quantum Non-Demolition Detection of Itinerant Microwave Photons

  1. Jean-Claude Besse,
  2. Simone Gasparinetti,
  3. Michele C. Collodo,
  4. Theo Walter,
  5. Philipp Kurpiers,
  6. Marek Pechal,
  7. Christopher Eichler,
  8. and Andreas Wallraff
Single-photon detection is an essential component in many experiments in quantum optics, but remains challenging in the microwave domain. We realize a quantum non-demolition detector
for propagating microwave photons and characterize its performance using a single-photon source. To this aim we implement a cavity-assisted conditional phase gate between the incoming photon and a superconducting artificial atom. By reading out the state of this atom in single shot, we reach an internal photon detection fidelity of 71%, limited by the coherence properties of the qubit. By characterizing the coherence and average number of photons in the field reflected off the detector, we demonstrate its quantum non-demolition nature. We envisage applications in generating heralded remote entanglement between qubits and for realizing logic gates between propagating microwave photons.

Studying Light-Harvesting Models with Superconducting Circuits

  1. Anton Potočnik,
  2. Arno Bargerbos,
  3. Florian A. Y. N. Schröder,
  4. Saeed A. Khan,
  5. Michele C. Collodo,
  6. Simone Gasparinetti,
  7. Yves Salathé,
  8. Celestino Creatore,
  9. Christopher Eichler,
  10. Hakan E. Türeci,
  11. Alex W. Chin,
  12. and Andreas Wallraff
The process of photosynthesis, the main source of energy in the animate world, converts sunlight into chemical energy. The surprisingly high efficiency of this process is believed to
be enabled by an intricate interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a new approach for studying photosynthetic models based on superconducting quantum circuits. In particular, we demonstrate the unprecedented versatility and control of our method in an engineered three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 105. With this system we show that the excitation transport between quantum coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.

Correlations and entanglement of microwave photons emitted in a cascade decay

  1. Simone Gasparinetti,
  2. Marek Pechal,
  3. Jean-Claude Besse,
  4. Mintu Mondal,
  5. Christopher Eichler,
  6. and Andreas Wallraff
An excited emitter decays by radiating a photon into a quantized mode of the electromagnetic field, a process known as spontaneous emission. If the emitter is driven to a higher excited
state, it radiates multiple photons in a cascade decay. Atomic and biexciton cascades have been exploited as sources of polarization-entangled photon pairs. Because the photons are emitted sequentially, their intensities are strongly correlated in time, as measured in a double-beam coincidence experiment. Perhaps less intuitively, their phases can also be correlated, provided a single emitter is deterministically prepared into a superposition state, and the emitted radiation is detected in a phase-sensitive manner and with high efficiency. Here we have met these requirements by using a superconducting artificial atom, coherently driven to its second-excited state and decaying into a well-defined microwave mode. Our results highlight the coherent nature of cascade decay and demonstrate a novel protocol to generate entanglement between itinerant field modes.

Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

  1. Anna Stockklauser,
  2. Pasquale Scarlino,
  3. Jonne Koski,
  4. Simone Gasparinetti,
  5. Christian Kraglund Andersen,
  6. Christian Reichl,
  7. Werner Wegscheider,
  8. Thomas Ihn,
  9. Klaus Ensslin,
  10. and Andreas Wallraff
The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matter-like quantum system to coherently transform an individual excitation into a single
photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work we demonstrate strong coupling between the charge degree of freedom in a gate-detuned GaAs double quantum dot (DQD) and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices (SQUIDs). In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238 MHz at a resonator linewidth κ/2π=12 MHz and a DQD charge qubit dephasing rate of γ2/2π=80 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit based cavity QED for quantum information processing in semiconductor nano-structures.

Measurement of a Vacuum-Induced Geometric Phase

  1. Simone Gasparinetti,
  2. Simon Berger,
  3. Abdufarrukh A. Abdumalikov,
  4. Marek Pechal,
  5. Stefan Filipp,
  6. and Andreas J. Wallraff
Berry’s geometric phase naturally appears when a quantum system is driven by an external field whose parameters are slowly and cyclically changed. A variation in the coupling
between the system and the external field can also give rise to a geometric phase, even when the field is in the vacuum state or any other Fock state. Here we demonstrate the appearance of a vacuum-induced Berry phase in an artificial atom, a superconducting transmon, interacting with a single mode of a microwave cavity. As we vary the phase of the interaction, the artificial atom acquires a geometric phase determined by the path traced out in the combined Hilbert space of the atom and the quantum field. Our ability to control this phase opens new possibilities for the geometric manipulation of atom-cavity systems also in the context of quantum information processing.

Lamb shift enhancement and detection in strongly driven superconducting circuits

  1. Vera Gramich,
  2. Simone Gasparinetti,
  3. Paolo Solinas,
  4. and Joachim Ankerhold
It is shown that strong driving of a quantum system substantially enhances the Lamb shift induced by broadband reservoirs which are typical for solid-state devices. By varying drive
parameters the impact of environmental vacuum fluctuations with continuous spectral distribution onto system observables can be tuned in a distinctive way. This provides experimentally feasible measurement schemes for the Lamb shift in superconducting circuits based on Cooper pair boxes, where it can be detected either in shifted dressed transition frequencies or in pumped charge currents.