Enhancing the performance of noisy quantum processors requires improving our understanding of error mechanisms and the ways to overcome them. A judicious selection of qubit design parameters,guided by an accurate error model, plays a pivotal role in improving the performance of quantum processors. In this study, we identify optimal ranges for qubit design parameters, grounded in comprehensive noise modeling. To this end, we commence by analyzing a previously unexplored error mechanism that can perturb diabatic two-qubit gates due to charge-parity switches caused by quasiparticles. We show that such charge-parity switching can be the dominant quasiparticle-related error source in a controlled-Z gate between two qubits. Moreover, we also demonstrate that quasiparticle dynamics, resulting in uncontrolled charge-parity switches, induce a residual longitudinal interaction between qubits in a tunable-coupler circuit. Our analysis of optimal design parameters is based on a performance metric for quantum circuit execution that takes into account the fidelity and frequencies of the appearance of both single and two-qubit gates in the circuit. This performance metric together with a detailed noise model enables us to find an optimal range for the qubit design parameters. Substantiating our findings through exact numerical simulations, we establish that fabricating quantum chips within this optimal parameter range not only augments the performance metric but also ensures its continued improvement with the enhancement of individual qubit coherence properties. Conversely, straying from the optimal parameter range can lead to the saturation of the performance metric. Our systematic analysis offers insights and serves as a guiding framework for the development of the next generation of transmon-based quantum processors.
Tunable coupling of superconducting qubits has been widely studied due to its importance for isolated gate operations in scalable quantum processor architectures. Here, we demonstratea tunable qubit-qubit coupler based on a floating transmon device which allows us to place qubits at least 2 mm apart from each other while maintaining over 50 MHz coupling between the coupler and the qubits. In the introduced tunable-coupler design, both the qubit-qubit and the qubit-coupler couplings are mediated by two waveguides instead of relying on direct capacitive couplings between the components, reducing the impact of the qubit-qubit distance on the couplings. This leaves space for each qubit to have an individual readout resonator and a Purcell filter needed for fast high-fidelity readout. In addition, the large qubit-qubit distance reduces unwanted non-nearest neighbor coupling and allows multiple control lines to cross over the structure with minimal crosstalk. Using the proposed flexible and scalable architecture, we demonstrate a controlled-Z gate with (99.81±0.02)% fidelity.
Superconducting qubits are one of the most promising candidates to implement quantum computers. The superiority of superconducting quantum computers over any classical device in simulatingrandom but well-determined quantum circuits has already been shown in two independent experiments and important steps have been taken in quantum error correction. However, the currently wide-spread qubit designs do not yet provide high enough performance to enable practical applications or efficient scaling of logical qubits owing to one or several following issues: sensitivity to charge or flux noise leading to decoherence, too weak non-linearity preventing fast operations, undesirably dense excitation spectrum, or complicated design vulnerable to parasitic capacitance. Here, we introduce and demonstrate a superconducting-qubit type, the unimon, which combines the desired properties of high non-linearity, full insensitivity to dc charge noise, insensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. We measure the qubit frequency, ω01/(2π), and anharmonicity α over the full dc-flux range and observe, in agreement with our quantum models, that the qubit anharmonicity is greatly enhanced at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13-ns single-qubit gates on two qubits with (ω01,α)=(4.49 GHz,434 MHz)×2π and (3.55 GHz,744 MHz)×2π, respectively. The energy relaxation time T1≲10 μs is stable for hours and seems to be limited by dielectric losses. Thus, future improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible quantum advantage with noisy systems.
Superconducting Josephson junction qubits constitute the main current technology for many applications, including scalable quantum computers and thermal devices. Theoretical modelingof such systems is usually done within the two-level approximation. However, accurate theoretical modeling requires taking into account the influence of the higher excited states without limiting the system to the two-level qubit subspace. Here, we study the dynamics and control of a superconducting transmon using the numerically exact stochastic Liouville-von Neumann equation approach. We focus on the role of state leakage from the ideal two-level subspace for bath induced decay and single-qubit gate operations. We find significant short-time state leakage due to the strong coupling to the bath. We quantify the leakage errors in single-qubit gates and demonstrate their suppression with DRAG control for a five-level transmon in the presence of decoherence. Our results predict the limits of accuracy of the two-level approximation and possible intrinsic constraints in qubit dynamics and control for an experimentally relevant parameter set.
We propose an efficient qubit initialization protocol based on a dissipative environment that can be dynamically adjusted. Here the qubit is coupled to a thermal bath through a tunableharmonic oscillator. On-demand initialization is achieved by sweeping the oscillator rapidly into resonance with the qubit. This resonant coupling with the engineered environment induces fast relaxation to the ground state of the system, and a consecutive rapid sweep back to off resonance guarantees weak excess dissipation during quantum computations. We solve the corresponding quantum dynamics using a Markovian master equation for the reduced density operator of the qubit-bath system. This allows us to optimize the parameters and the initialization protocol for the qubit. Our analytical calculations show that the ground-state occupation of our system is well protected during the fast sweeps of the environmental coupling and, consequently, we obtain an estimate for the duration of our protocol by solving the transition rates between the low-energy eigenstates with the Jacobian diagonalization method. Our results suggest that the current experimental state of the art for the initialization speed of superconducting qubits at a given fidelity can be considerably improved.
We study the novel nonlinear phenomena that emerge in a charge qubit due to the interplay between a strong microwave flux drive and a periodic Josephson potential. We first analyzethe system in terms of the linear Landau-Zener-St\“uckelberg model, and show its inadequacy in a periodic system with several Landau-Zener crossings within a drive period. Experimentally, we probe the quasienergy levels of the driven qubit with an LC-cavity, which requires the use of linear response theory. We also show that our numerical calculations are in good agreement with the experimental data.