Dynamic compensation for pump-induced frequency shift in Kerr-cat qubit initialization

  1. Yifang Xu,
  2. Ziyue Hua,
  3. Weiting Wang,
  4. Yuwei Ma,
  5. Ming Li,
  6. Jiajun Chen,
  7. Jie Zhou,
  8. Xiaoxuan Pan,
  9. Lintao Xiao,
  10. Hongwei Huang,
  11. Weizhou Cai,
  12. Hao Ai,
  13. Yu-xi Liu,
  14. Chang-Ling Zou,
  15. and Luyan Sun
The noise-biased Kerr-cat qubit is an attractive candidate for fault-tolerant quantum computation; however, its initialization faces challenges due to the squeezing pump-induced frequency

Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields

  1. Xinhui Ruan,
  2. Jia-Heng Wang,
  3. Dong He,
  4. Pengtao Song,
  5. Shengyong Li,
  6. Qianchuan Zhao,
  7. L.M. Kuang,
  8. Jaw-Shen Tsai,
  9. Chang-Ling Zou,
  10. Jing Zhang,
  11. Dongning Zheng,
  12. O. V. Astafiev,
  13. Yu-xi Liu,
  14. and Zhihui Peng
We report an experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity. One of the fields

10-GHz superconducting cavity piezo-optomechanics for microwave-optical photon conversion

  1. Xu Han,
  2. Wei Fu,
  3. Changchun Zhong,
  4. Chang-Ling Zou,
  5. Yuntao Xu,
  6. Ayed Al Sayem,
  7. Mingrui Xu,
  8. Sihao Wang,
  9. Risheng Cheng,
  10. Liang Jiang,
  11. and Hong X. Tang
Coherent photon conversion between microwave and optics holds promise for the realization of distributed quantum networks, in particular, the architecture that incorporates superconducting

Magnon-photon strong coupling for tunable microwave circulators

  1. Na Zhu,
  2. Xu Han,
  3. Chang-Ling Zou,
  4. Mingrui Xu,
  5. and Hong X. Tang
We present a generic theoretical framework to describe non-reciprocal microwave circulation in a multimode cavity magnonic system and assess the optimal performance of practical circulatordevices. We show that high isolation (> 56 dB), extremely low insertion loss (< 0.05 dB), and flexible bandwidth control can be potentially realized in high-quality-factor superconducting cavity based magnonic platforms. These circulation characteristics are analyzed with materials of different spin densities. For high-spin-density materials such as yttrium iron garnet, strong coupling operation regime can be harnessed to obtain a broader circulation bandwidth. We also provide practical design principles for a highly integratible low-spin-density material (vanadium tetracyanoethylene) for narrow-band circulator operation, which could benefit noise-sensitive quantum microwave measurements. This theory can be extended to other coupled systems and provide design guidelines for achieving tunable microwave non-reciprocity for both classical and quantum applications.[/expand]

Radiative cooling of a superconducting resonator

  1. Mingrui Xu,
  2. Xu Han,
  3. Chang-Ling Zou,
  4. Wei Fu,
  5. Yuntao Xu,
  6. Changchun Zhong,
  7. Liang Jiang,
  8. and Hong X. Tang
Cooling microwave resonators to near the quantum ground state, crucial for their operation in the quantum regime, is typically achieved by direct device refrigeration to a few tens

Hardware-efficient quantum random access memory with hybrid quantum acoustic systems

  1. Connor T. Hann,
  2. Chang-Ling Zou,
  3. Yaxing Zhang,
  4. Yiwen Chu,
  5. Robert J. Schoelkopf,
  6. Steven M. Girvin,
  7. and Liang Jiang
Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acoustic

Quantum generative adversarial learning in a superconducting quantum circuit

  1. Ling Hu,
  2. Shu-Hao Wu,
  3. Weizhou Cai,
  4. Yuwei Ma,
  5. Xianghao Mu,
  6. Yuan Xu,
  7. Haiyan Wang,
  8. Yipu Song,
  9. Dong-Ling Deng,
  10. Chang-Ling Zou,
  11. and Luyan Sun
Generative adversarial learning is one of the most exciting recent breakthroughs in machine learning—a subfield of artificial intelligence that is currently driving a revolution

Superconducting cavity electro-optics: a platform for coherent photon conversion between superconducting and photonic circuits

  1. Linran Fan,
  2. Chang-Ling Zou,
  3. Risheng Cheng,
  4. Xiang Guo,
  5. Xu Han,
  6. Zheng Gong,
  7. Sihao Wang,
  8. and Hong X. Tang
Leveraging the quantum information processing ability of superconducting circuits and long-distance distribution ability of optical photons promises the realization of complex and large-scale

Cat codes with optimal decoherence suppression for a lossy bosonic channel

  1. Linshu Li,
  2. Chang-ling Zou,
  3. Victor V. Albert,
  4. Sreraman Muralidharan,
  5. S. M. Girvin,
  6. and Liang Jiang
We investigate cat codes that can correct multiple excitation losses and identify two types of logical errors: bit-flip errors due to excessive excitation loss and dephasing errors

Magnon dark modes and gradient memory

  1. Xufeng Zhang,
  2. Chang-Ling Zou,
  3. Na Zhu,
  4. Florian Marquardt,
  5. Liang Jiang,
  6. and Hong X. Tang
Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin