Dynamics and Resonance Fluorescence from a Superconducting Artificial Atom Doubly Driven by Quantized and Classical Fields

  1. Xinhui Ruan,
  2. Jia-Heng Wang,
  3. Dong He,
  4. Pengtao Song,
  5. Shengyong Li,
  6. Qianchuan Zhao,
  7. L.M. Kuang,
  8. Jaw-Shen Tsai,
  9. Chang-Ling Zou,
  10. Jing Zhang,
  11. Dongning Zheng,
  12. O. V. Astafiev,
  13. Yu-xi Liu,
  14. and Zhihui Peng
We report an experimental demonstration of resonance fluorescence in a two-level superconducting artificial atom under two driving fields coupled to a detuned cavity. One of the fields
is classical and the other is varied from quantum (vacuum fluctuations) to classical one by controlling the photon number inside the cavity. The device consists of a transmon qubit strongly coupled to a one-dimensional transmission line and a coplanar waveguide resonator. We observe a sideband anti-crossing and asymmetry in the emission spectra of the system through a one-dimensional transmission line, which is fundamentally different from the weak coupling case. By changing the photon number inside the cavity, the emission spectrum of our doubly driven system approaches to the case when the atom is driven by two classical bichromatic fields. We also measure the dynamical evolution of the system through the transmission line and study the properties of the first-order correlation function, Rabi oscillations and energy relaxation in the system. The study of resonance fluorescence from an atom driven by two fields promotes understanding decoherence in superconducting quantum circuits and may find applications in superconducting quantum computing and quantum networks.

Transparency and amplification in a hybrid system of mechanical resonator and circuit QED

  1. Hui Wang,
  2. Hui-Chen Sun,
  3. Jing Zhang,
  4. and Yu-xi Liu
We theoretically study the transparency and amplification of a weak probe field applied to the cavity in hy- brid systems formed by a driven superconducting circuit QED system and a
mechanical resonator, or a driven optomechanical system and a superconducting qubit. We find that both the mechanical resonator and the su- perconducting qubit can result in the transparency to a weak probe field in such hybrid systems when a strong driving field is applied to the cavity. We also find that the weak probe field can be amplified in some parameter regimes. We further study the statistical properties of the output field via the degrees of second-order coherence. We find that the nonclassicality of the output field strongly depends on the system parameters. Our studies show that one can control single-photon transmission in the optomechanical system via a tunable artificial atom or in the circuit QED system via a mechanical resonator.

Feedback-induced nonlinearity and superconducting on-chip quantum optics

  1. Zhong-Peng Liu,
  2. Hui Wang,
  3. Jing Zhang,
  4. Yu-xi Liu,
  5. Re-Bing Wu,
  6. and Franco Nori
Quantum coherent feedback has been proven to be an efficient way to tune the dynamics of quantum optical systems and, recently, those of solid-state quantum circuits. Here, inspired
by the recent progress of quantum feedback experiments, especially those in mesoscopic circuits, we prove that superconducting circuit QED systems, shunted with a coherent feedback loop, can change the dynamics of a superconducting transmission line resonator, i.e., a linear quantum cavity, and lead to strong on-chip nonlinear optical phenomena. We find that bistability can occur under the semiclassical approximation, and photon anti-bunching can be shown in the quantum regime. Our study presents new perspectives for engineering nonlinear quantum dynamics on a chip.